Loading…

Canopy spectral invariants, Part 2: Application to classification of forest types from hyperspectral data

Many studies have been conducted to demonstrate the ability of hyperspectral data to discriminate plant dominant species. Most of them have employed the use of empirically based techniques, which are site specific, requires some initial training based on characteristics of known leaf and/or canopy s...

Full description

Saved in:
Bibliographic Details
Published in:Journal of quantitative spectroscopy & radiative transfer 2011-03, Vol.112 (4), p.736-750
Main Authors: Schull, M.A., Knyazikhin, Y., Xu, L., Samanta, A., Carmona, P.L., Lepine, L., Jenkins, J.P., Ganguly, S., Myneni, R.B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c447t-693f8de6e22e8f29d72a46793ba0e04cac3d902ed8d3d851b690b8eb0921735d3
cites cdi_FETCH-LOGICAL-c447t-693f8de6e22e8f29d72a46793ba0e04cac3d902ed8d3d851b690b8eb0921735d3
container_end_page 750
container_issue 4
container_start_page 736
container_title Journal of quantitative spectroscopy & radiative transfer
container_volume 112
creator Schull, M.A.
Knyazikhin, Y.
Xu, L.
Samanta, A.
Carmona, P.L.
Lepine, L.
Jenkins, J.P.
Ganguly, S.
Myneni, R.B.
description Many studies have been conducted to demonstrate the ability of hyperspectral data to discriminate plant dominant species. Most of them have employed the use of empirically based techniques, which are site specific, requires some initial training based on characteristics of known leaf and/or canopy spectra and therefore may not be extendable to operational use or adapted to changing or unknown land cover. In this paper we propose a physically based approach for separation of dominant forest type using hyperspectral data. The radiative transfer theory of canopy spectral invariants underlies the approach, which facilitates parameterization of the canopy reflectance in terms of the leaf spectral scattering and two spectrally invariant and structurally varying variables—recollision and directional escape probabilities. The methodology is based on the idea of retrieving spectrally invariant parameters from hyperspectral data first, and then relating their values to structural characteristics of three-dimensional canopy structure. Theoretical and empirical analyses of ground and airborne data acquired by Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) over two sites in New England, USA, suggest that the canopy spectral invariants convey information about canopy structure at both the macro- and micro-scales. The total escape probability (one minus recollision probability) varies as a power function with the exponent related to the number of nested hierarchical levels present in the pixel. Its base is a geometrical mean of the local total escape probabilities and accounts for the cumulative effect of canopy structure over a wide range of scales. The ratio of the directional to the total escape probability becomes independent of the number of hierarchical levels and is a function of the canopy structure at the macro-scale such as tree spatial distribution, crown shape and size, within-crown foliage density and ground cover. These properties allow for the natural separation of dominant forest classes based on the location of points on the total escape probability vs the ratio log–log plane.
doi_str_mv 10.1016/j.jqsrt.2010.06.004
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1136345099</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022407310002499</els_id><sourcerecordid>1136345099</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-693f8de6e22e8f29d72a46793ba0e04cac3d902ed8d3d851b690b8eb0921735d3</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxYMoWD_-Ai85enDrJNlmN4KHUvyCgh70HNJkFlO2m22SFvrfu7Xq0dMMw3uPeT9CrhiMGTB5uxwv1ynmMYfhAnIMUB6REasrVTAx4cdkBMB5UUIlTslZSksAEILJEfEz04V-R1OPNkfTUt9tTfSmy-mGvpmYKb-j075vvTXZh47mQG1rUvLN7yU0tAkRU6Z512OiTQwr-jms8S_UmWwuyElj2oSXP_OcfDw-vM-ei_nr08tsOi9sWVa5kEo0tUOJnGPdcOUqbkpZKbEwgFBaY4VTwNHVTrh6whZSwaLGBSjOKjFx4pxcH3L7GNab4S298sli25oOwyZpxoQU5QSUGqTiILUxpBSx0X30KxN3moHeg9VL_Q1W78FqkHoAO7juDy4cWmw9Rp2sx86i83Hoq13w__q_AMvThD4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1136345099</pqid></control><display><type>article</type><title>Canopy spectral invariants, Part 2: Application to classification of forest types from hyperspectral data</title><source>ScienceDirect Freedom Collection</source><creator>Schull, M.A. ; Knyazikhin, Y. ; Xu, L. ; Samanta, A. ; Carmona, P.L. ; Lepine, L. ; Jenkins, J.P. ; Ganguly, S. ; Myneni, R.B.</creator><creatorcontrib>Schull, M.A. ; Knyazikhin, Y. ; Xu, L. ; Samanta, A. ; Carmona, P.L. ; Lepine, L. ; Jenkins, J.P. ; Ganguly, S. ; Myneni, R.B.</creatorcontrib><description>Many studies have been conducted to demonstrate the ability of hyperspectral data to discriminate plant dominant species. Most of them have employed the use of empirically based techniques, which are site specific, requires some initial training based on characteristics of known leaf and/or canopy spectra and therefore may not be extendable to operational use or adapted to changing or unknown land cover. In this paper we propose a physically based approach for separation of dominant forest type using hyperspectral data. The radiative transfer theory of canopy spectral invariants underlies the approach, which facilitates parameterization of the canopy reflectance in terms of the leaf spectral scattering and two spectrally invariant and structurally varying variables—recollision and directional escape probabilities. The methodology is based on the idea of retrieving spectrally invariant parameters from hyperspectral data first, and then relating their values to structural characteristics of three-dimensional canopy structure. Theoretical and empirical analyses of ground and airborne data acquired by Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) over two sites in New England, USA, suggest that the canopy spectral invariants convey information about canopy structure at both the macro- and micro-scales. The total escape probability (one minus recollision probability) varies as a power function with the exponent related to the number of nested hierarchical levels present in the pixel. Its base is a geometrical mean of the local total escape probabilities and accounts for the cumulative effect of canopy structure over a wide range of scales. The ratio of the directional to the total escape probability becomes independent of the number of hierarchical levels and is a function of the canopy structure at the macro-scale such as tree spatial distribution, crown shape and size, within-crown foliage density and ground cover. These properties allow for the natural separation of dominant forest classes based on the location of points on the total escape probability vs the ratio log–log plane.</description><identifier>ISSN: 0022-4073</identifier><identifier>EISSN: 1879-1352</identifier><identifier>DOI: 10.1016/j.jqsrt.2010.06.004</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Canopies ; Ecosystem ; Escape structures ; Forests ; Hyperspectral data ; Invariants ; Parametrization ; Radiative transfer ; Scaling ; Scattering albedo ; Separation ; Spectra ; Spectral invariants ; Vegetation structure</subject><ispartof>Journal of quantitative spectroscopy &amp; radiative transfer, 2011-03, Vol.112 (4), p.736-750</ispartof><rights>2010 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-693f8de6e22e8f29d72a46793ba0e04cac3d902ed8d3d851b690b8eb0921735d3</citedby><cites>FETCH-LOGICAL-c447t-693f8de6e22e8f29d72a46793ba0e04cac3d902ed8d3d851b690b8eb0921735d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Schull, M.A.</creatorcontrib><creatorcontrib>Knyazikhin, Y.</creatorcontrib><creatorcontrib>Xu, L.</creatorcontrib><creatorcontrib>Samanta, A.</creatorcontrib><creatorcontrib>Carmona, P.L.</creatorcontrib><creatorcontrib>Lepine, L.</creatorcontrib><creatorcontrib>Jenkins, J.P.</creatorcontrib><creatorcontrib>Ganguly, S.</creatorcontrib><creatorcontrib>Myneni, R.B.</creatorcontrib><title>Canopy spectral invariants, Part 2: Application to classification of forest types from hyperspectral data</title><title>Journal of quantitative spectroscopy &amp; radiative transfer</title><description>Many studies have been conducted to demonstrate the ability of hyperspectral data to discriminate plant dominant species. Most of them have employed the use of empirically based techniques, which are site specific, requires some initial training based on characteristics of known leaf and/or canopy spectra and therefore may not be extendable to operational use or adapted to changing or unknown land cover. In this paper we propose a physically based approach for separation of dominant forest type using hyperspectral data. The radiative transfer theory of canopy spectral invariants underlies the approach, which facilitates parameterization of the canopy reflectance in terms of the leaf spectral scattering and two spectrally invariant and structurally varying variables—recollision and directional escape probabilities. The methodology is based on the idea of retrieving spectrally invariant parameters from hyperspectral data first, and then relating their values to structural characteristics of three-dimensional canopy structure. Theoretical and empirical analyses of ground and airborne data acquired by Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) over two sites in New England, USA, suggest that the canopy spectral invariants convey information about canopy structure at both the macro- and micro-scales. The total escape probability (one minus recollision probability) varies as a power function with the exponent related to the number of nested hierarchical levels present in the pixel. Its base is a geometrical mean of the local total escape probabilities and accounts for the cumulative effect of canopy structure over a wide range of scales. The ratio of the directional to the total escape probability becomes independent of the number of hierarchical levels and is a function of the canopy structure at the macro-scale such as tree spatial distribution, crown shape and size, within-crown foliage density and ground cover. These properties allow for the natural separation of dominant forest classes based on the location of points on the total escape probability vs the ratio log–log plane.</description><subject>Canopies</subject><subject>Ecosystem</subject><subject>Escape structures</subject><subject>Forests</subject><subject>Hyperspectral data</subject><subject>Invariants</subject><subject>Parametrization</subject><subject>Radiative transfer</subject><subject>Scaling</subject><subject>Scattering albedo</subject><subject>Separation</subject><subject>Spectra</subject><subject>Spectral invariants</subject><subject>Vegetation structure</subject><issn>0022-4073</issn><issn>1879-1352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LAzEQxYMoWD_-Ai85enDrJNlmN4KHUvyCgh70HNJkFlO2m22SFvrfu7Xq0dMMw3uPeT9CrhiMGTB5uxwv1ynmMYfhAnIMUB6REasrVTAx4cdkBMB5UUIlTslZSksAEILJEfEz04V-R1OPNkfTUt9tTfSmy-mGvpmYKb-j075vvTXZh47mQG1rUvLN7yU0tAkRU6Z512OiTQwr-jms8S_UmWwuyElj2oSXP_OcfDw-vM-ei_nr08tsOi9sWVa5kEo0tUOJnGPdcOUqbkpZKbEwgFBaY4VTwNHVTrh6whZSwaLGBSjOKjFx4pxcH3L7GNab4S298sli25oOwyZpxoQU5QSUGqTiILUxpBSx0X30KxN3moHeg9VL_Q1W78FqkHoAO7juDy4cWmw9Rp2sx86i83Hoq13w__q_AMvThD4</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Schull, M.A.</creator><creator>Knyazikhin, Y.</creator><creator>Xu, L.</creator><creator>Samanta, A.</creator><creator>Carmona, P.L.</creator><creator>Lepine, L.</creator><creator>Jenkins, J.P.</creator><creator>Ganguly, S.</creator><creator>Myneni, R.B.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20110301</creationdate><title>Canopy spectral invariants, Part 2: Application to classification of forest types from hyperspectral data</title><author>Schull, M.A. ; Knyazikhin, Y. ; Xu, L. ; Samanta, A. ; Carmona, P.L. ; Lepine, L. ; Jenkins, J.P. ; Ganguly, S. ; Myneni, R.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-693f8de6e22e8f29d72a46793ba0e04cac3d902ed8d3d851b690b8eb0921735d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Canopies</topic><topic>Ecosystem</topic><topic>Escape structures</topic><topic>Forests</topic><topic>Hyperspectral data</topic><topic>Invariants</topic><topic>Parametrization</topic><topic>Radiative transfer</topic><topic>Scaling</topic><topic>Scattering albedo</topic><topic>Separation</topic><topic>Spectra</topic><topic>Spectral invariants</topic><topic>Vegetation structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schull, M.A.</creatorcontrib><creatorcontrib>Knyazikhin, Y.</creatorcontrib><creatorcontrib>Xu, L.</creatorcontrib><creatorcontrib>Samanta, A.</creatorcontrib><creatorcontrib>Carmona, P.L.</creatorcontrib><creatorcontrib>Lepine, L.</creatorcontrib><creatorcontrib>Jenkins, J.P.</creatorcontrib><creatorcontrib>Ganguly, S.</creatorcontrib><creatorcontrib>Myneni, R.B.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of quantitative spectroscopy &amp; radiative transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schull, M.A.</au><au>Knyazikhin, Y.</au><au>Xu, L.</au><au>Samanta, A.</au><au>Carmona, P.L.</au><au>Lepine, L.</au><au>Jenkins, J.P.</au><au>Ganguly, S.</au><au>Myneni, R.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Canopy spectral invariants, Part 2: Application to classification of forest types from hyperspectral data</atitle><jtitle>Journal of quantitative spectroscopy &amp; radiative transfer</jtitle><date>2011-03-01</date><risdate>2011</risdate><volume>112</volume><issue>4</issue><spage>736</spage><epage>750</epage><pages>736-750</pages><issn>0022-4073</issn><eissn>1879-1352</eissn><abstract>Many studies have been conducted to demonstrate the ability of hyperspectral data to discriminate plant dominant species. Most of them have employed the use of empirically based techniques, which are site specific, requires some initial training based on characteristics of known leaf and/or canopy spectra and therefore may not be extendable to operational use or adapted to changing or unknown land cover. In this paper we propose a physically based approach for separation of dominant forest type using hyperspectral data. The radiative transfer theory of canopy spectral invariants underlies the approach, which facilitates parameterization of the canopy reflectance in terms of the leaf spectral scattering and two spectrally invariant and structurally varying variables—recollision and directional escape probabilities. The methodology is based on the idea of retrieving spectrally invariant parameters from hyperspectral data first, and then relating their values to structural characteristics of three-dimensional canopy structure. Theoretical and empirical analyses of ground and airborne data acquired by Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) over two sites in New England, USA, suggest that the canopy spectral invariants convey information about canopy structure at both the macro- and micro-scales. The total escape probability (one minus recollision probability) varies as a power function with the exponent related to the number of nested hierarchical levels present in the pixel. Its base is a geometrical mean of the local total escape probabilities and accounts for the cumulative effect of canopy structure over a wide range of scales. The ratio of the directional to the total escape probability becomes independent of the number of hierarchical levels and is a function of the canopy structure at the macro-scale such as tree spatial distribution, crown shape and size, within-crown foliage density and ground cover. These properties allow for the natural separation of dominant forest classes based on the location of points on the total escape probability vs the ratio log–log plane.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jqsrt.2010.06.004</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-4073
ispartof Journal of quantitative spectroscopy & radiative transfer, 2011-03, Vol.112 (4), p.736-750
issn 0022-4073
1879-1352
language eng
recordid cdi_proquest_miscellaneous_1136345099
source ScienceDirect Freedom Collection
subjects Canopies
Ecosystem
Escape structures
Forests
Hyperspectral data
Invariants
Parametrization
Radiative transfer
Scaling
Scattering albedo
Separation
Spectra
Spectral invariants
Vegetation structure
title Canopy spectral invariants, Part 2: Application to classification of forest types from hyperspectral data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A50%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Canopy%20spectral%20invariants,%20Part%202:%20Application%20to%20classification%20of%20forest%20types%20from%20hyperspectral%20data&rft.jtitle=Journal%20of%20quantitative%20spectroscopy%20&%20radiative%20transfer&rft.au=Schull,%20M.A.&rft.date=2011-03-01&rft.volume=112&rft.issue=4&rft.spage=736&rft.epage=750&rft.pages=736-750&rft.issn=0022-4073&rft.eissn=1879-1352&rft_id=info:doi/10.1016/j.jqsrt.2010.06.004&rft_dat=%3Cproquest_cross%3E1136345099%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c447t-693f8de6e22e8f29d72a46793ba0e04cac3d902ed8d3d851b690b8eb0921735d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1136345099&rft_id=info:pmid/&rfr_iscdi=true