Loading…
Laser plasma accelerator driven by a super-Gaussian pulse
A laser wakefield accelerator (LWFA) with a weak focusing force is considered to seek improved beam quality in LWFA. We employ super-Gaussian laser pulses to generate the wakefield and study the behavior of the electron beam dynamics and synchrotron radiation arising from the transverse betatron osc...
Saved in:
Published in: | Journal of plasma physics 2012-08, Vol.78 (4), p.447-453 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A laser wakefield accelerator (LWFA) with a weak focusing force is considered to seek improved beam quality in LWFA. We employ super-Gaussian laser pulses to generate the wakefield and study the behavior of the electron beam dynamics and synchrotron radiation arising from the transverse betatron oscillations through analysis and computation. We note that the super-Gaussian wakefields radically reduce the betatron oscillations and make the electron orbits mainly ballistic over a single stage. This feature permits to obtain small emittance and thus high luminosity, while still benefitting from the low-density operation of LWFA (Nakajima et al. 2011 Phys. Rev. ST Accel. Beams14, 091301), such as the reduced radiation loss, less number of stages, less beam instabilities, and less required wall plug power than in higher density regimes. |
---|---|
ISSN: | 0022-3778 1469-7807 |
DOI: | 10.1017/S0022377812000311 |