Loading…

Diffusion Approximation of an Array of Controlled Branching Processes

In this paper an array of controlled branching processes is considered. Using operator semigroup convergence theorems, it is proved that the fluctuation limit is a diffusion process under the conditions that the offspring and control means tend to be critical . As an application of this result, in a...

Full description

Saved in:
Bibliographic Details
Published in:Methodology and computing in applied probability 2012-09, Vol.14 (3), p.843-861
Main Authors: González, Miguel, del Puerto, Inés M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c349t-4570117172cc7a8f79d5c38cb8d7d40153b6b422659073b3739fef0566d5f6bd3
cites cdi_FETCH-LOGICAL-c349t-4570117172cc7a8f79d5c38cb8d7d40153b6b422659073b3739fef0566d5f6bd3
container_end_page 861
container_issue 3
container_start_page 843
container_title Methodology and computing in applied probability
container_volume 14
creator González, Miguel
del Puerto, Inés M.
description In this paper an array of controlled branching processes is considered. Using operator semigroup convergence theorems, it is proved that the fluctuation limit is a diffusion process under the conditions that the offspring and control means tend to be critical . As an application of this result, in a parametric framework, it is obtained that the bootstrapping distribution of the weighted conditional least squares estimator of the offspring mean in the critical case is not consistent. From this, it is concluded that the standard parametric bootstrap weighted conditional least squares estimate is asymptotically invalid in the critical case.
doi_str_mv 10.1007/s11009-012-9285-8
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1136369193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1136369193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-4570117172cc7a8f79d5c38cb8d7d40153b6b422659073b3739fef0566d5f6bd3</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI7-AHcFN26iuU3TJMtxHB8woAtdhzZNxg6dZExacP69KXUhgqv74JzD4UPoEsgNEMJvI6QhMYEcy1wwLI7QDBinmHOgx2mngmMmCjhFZzFuCcmB0WKGVvettUNsvcsW-33wX-2u6sfL26xKvxCqw7gvveuD7zrTZHehcvqjdZvsNXhtYjTxHJ3Yqovm4mfO0fvD6m35hNcvj8_LxRprWsgeF4wTAA4815pXwnLZME2FrkXDm4KkRnVZF3leMkk4rSmn0hpLWFk2zJZ1Q-foespNTT8HE3u1a6M2XVc544eoAGhJSwmSJunVH-nWD8GldgoIJRykTPlzBJNKBx9jMFbtQyIQDkmkRrBqAqsSWDWCVSJ58skTk9ZtTPid_J_pG3FXeUc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1030719937</pqid></control><display><type>article</type><title>Diffusion Approximation of an Array of Controlled Branching Processes</title><source>EBSCOhost Business Source Ultimate</source><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>González, Miguel ; del Puerto, Inés M.</creator><creatorcontrib>González, Miguel ; del Puerto, Inés M.</creatorcontrib><description>In this paper an array of controlled branching processes is considered. Using operator semigroup convergence theorems, it is proved that the fluctuation limit is a diffusion process under the conditions that the offspring and control means tend to be critical . As an application of this result, in a parametric framework, it is obtained that the bootstrapping distribution of the weighted conditional least squares estimator of the offspring mean in the critical case is not consistent. From this, it is concluded that the standard parametric bootstrap weighted conditional least squares estimate is asymptotically invalid in the critical case.</description><identifier>ISSN: 1387-5841</identifier><identifier>EISSN: 1573-7713</identifier><identifier>DOI: 10.1007/s11009-012-9285-8</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Approximation ; Arrays ; Asymptotic properties ; Business and Management ; Convergence ; Diffusion ; Economics ; Electrical Engineering ; Least squares method ; Life Sciences ; Mathematical analysis ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Probability ; Statistics ; Studies ; Theorems</subject><ispartof>Methodology and computing in applied probability, 2012-09, Vol.14 (3), p.843-861</ispartof><rights>Springer Science+Business Media, LLC 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-4570117172cc7a8f79d5c38cb8d7d40153b6b422659073b3739fef0566d5f6bd3</citedby><cites>FETCH-LOGICAL-c349t-4570117172cc7a8f79d5c38cb8d7d40153b6b422659073b3739fef0566d5f6bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1030719937/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1030719937?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11668,27903,27904,36039,36040,44342,74641</link.rule.ids></links><search><creatorcontrib>González, Miguel</creatorcontrib><creatorcontrib>del Puerto, Inés M.</creatorcontrib><title>Diffusion Approximation of an Array of Controlled Branching Processes</title><title>Methodology and computing in applied probability</title><addtitle>Methodol Comput Appl Probab</addtitle><description>In this paper an array of controlled branching processes is considered. Using operator semigroup convergence theorems, it is proved that the fluctuation limit is a diffusion process under the conditions that the offspring and control means tend to be critical . As an application of this result, in a parametric framework, it is obtained that the bootstrapping distribution of the weighted conditional least squares estimator of the offspring mean in the critical case is not consistent. From this, it is concluded that the standard parametric bootstrap weighted conditional least squares estimate is asymptotically invalid in the critical case.</description><subject>Approximation</subject><subject>Arrays</subject><subject>Asymptotic properties</subject><subject>Business and Management</subject><subject>Convergence</subject><subject>Diffusion</subject><subject>Economics</subject><subject>Electrical Engineering</subject><subject>Least squares method</subject><subject>Life Sciences</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Probability</subject><subject>Statistics</subject><subject>Studies</subject><subject>Theorems</subject><issn>1387-5841</issn><issn>1573-7713</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kEtLxDAUhYMoOI7-AHcFN26iuU3TJMtxHB8woAtdhzZNxg6dZExacP69KXUhgqv74JzD4UPoEsgNEMJvI6QhMYEcy1wwLI7QDBinmHOgx2mngmMmCjhFZzFuCcmB0WKGVvettUNsvcsW-33wX-2u6sfL26xKvxCqw7gvveuD7zrTZHehcvqjdZvsNXhtYjTxHJ3Yqovm4mfO0fvD6m35hNcvj8_LxRprWsgeF4wTAA4815pXwnLZME2FrkXDm4KkRnVZF3leMkk4rSmn0hpLWFk2zJZ1Q-foespNTT8HE3u1a6M2XVc544eoAGhJSwmSJunVH-nWD8GldgoIJRykTPlzBJNKBx9jMFbtQyIQDkmkRrBqAqsSWDWCVSJ58skTk9ZtTPid_J_pG3FXeUc</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>González, Miguel</creator><creator>del Puerto, Inés M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120901</creationdate><title>Diffusion Approximation of an Array of Controlled Branching Processes</title><author>González, Miguel ; del Puerto, Inés M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-4570117172cc7a8f79d5c38cb8d7d40153b6b422659073b3739fef0566d5f6bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Approximation</topic><topic>Arrays</topic><topic>Asymptotic properties</topic><topic>Business and Management</topic><topic>Convergence</topic><topic>Diffusion</topic><topic>Economics</topic><topic>Electrical Engineering</topic><topic>Least squares method</topic><topic>Life Sciences</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Probability</topic><topic>Statistics</topic><topic>Studies</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>González, Miguel</creatorcontrib><creatorcontrib>del Puerto, Inés M.</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Methodology and computing in applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>González, Miguel</au><au>del Puerto, Inés M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffusion Approximation of an Array of Controlled Branching Processes</atitle><jtitle>Methodology and computing in applied probability</jtitle><stitle>Methodol Comput Appl Probab</stitle><date>2012-09-01</date><risdate>2012</risdate><volume>14</volume><issue>3</issue><spage>843</spage><epage>861</epage><pages>843-861</pages><issn>1387-5841</issn><eissn>1573-7713</eissn><abstract>In this paper an array of controlled branching processes is considered. Using operator semigroup convergence theorems, it is proved that the fluctuation limit is a diffusion process under the conditions that the offspring and control means tend to be critical . As an application of this result, in a parametric framework, it is obtained that the bootstrapping distribution of the weighted conditional least squares estimator of the offspring mean in the critical case is not consistent. From this, it is concluded that the standard parametric bootstrap weighted conditional least squares estimate is asymptotically invalid in the critical case.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11009-012-9285-8</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1387-5841
ispartof Methodology and computing in applied probability, 2012-09, Vol.14 (3), p.843-861
issn 1387-5841
1573-7713
language eng
recordid cdi_proquest_miscellaneous_1136369193
source EBSCOhost Business Source Ultimate; ABI/INFORM Global; Springer Nature
subjects Approximation
Arrays
Asymptotic properties
Business and Management
Convergence
Diffusion
Economics
Electrical Engineering
Least squares method
Life Sciences
Mathematical analysis
Mathematical models
Mathematics
Mathematics and Statistics
Probability
Statistics
Studies
Theorems
title Diffusion Approximation of an Array of Controlled Branching Processes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T18%3A40%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffusion%20Approximation%20of%20an%20Array%20of%20Controlled%20Branching%20Processes&rft.jtitle=Methodology%20and%20computing%20in%20applied%20probability&rft.au=Gonz%C3%A1lez,%20Miguel&rft.date=2012-09-01&rft.volume=14&rft.issue=3&rft.spage=843&rft.epage=861&rft.pages=843-861&rft.issn=1387-5841&rft.eissn=1573-7713&rft_id=info:doi/10.1007/s11009-012-9285-8&rft_dat=%3Cproquest_cross%3E1136369193%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-4570117172cc7a8f79d5c38cb8d7d40153b6b422659073b3739fef0566d5f6bd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1030719937&rft_id=info:pmid/&rfr_iscdi=true