Loading…
Diffusion Approximation of an Array of Controlled Branching Processes
In this paper an array of controlled branching processes is considered. Using operator semigroup convergence theorems, it is proved that the fluctuation limit is a diffusion process under the conditions that the offspring and control means tend to be critical . As an application of this result, in a...
Saved in:
Published in: | Methodology and computing in applied probability 2012-09, Vol.14 (3), p.843-861 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c349t-4570117172cc7a8f79d5c38cb8d7d40153b6b422659073b3739fef0566d5f6bd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c349t-4570117172cc7a8f79d5c38cb8d7d40153b6b422659073b3739fef0566d5f6bd3 |
container_end_page | 861 |
container_issue | 3 |
container_start_page | 843 |
container_title | Methodology and computing in applied probability |
container_volume | 14 |
creator | González, Miguel del Puerto, Inés M. |
description | In this paper an array of controlled branching processes is considered. Using operator semigroup convergence theorems, it is proved that the fluctuation limit is a diffusion process under the conditions that the offspring and control means tend to be
critical
. As an application of this result, in a parametric framework, it is obtained that the bootstrapping distribution of the weighted conditional least squares estimator of the offspring mean in the critical case is not consistent. From this, it is concluded that the standard parametric bootstrap weighted conditional least squares estimate is asymptotically invalid in the critical case. |
doi_str_mv | 10.1007/s11009-012-9285-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1136369193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1136369193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-4570117172cc7a8f79d5c38cb8d7d40153b6b422659073b3739fef0566d5f6bd3</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI7-AHcFN26iuU3TJMtxHB8woAtdhzZNxg6dZExacP69KXUhgqv74JzD4UPoEsgNEMJvI6QhMYEcy1wwLI7QDBinmHOgx2mngmMmCjhFZzFuCcmB0WKGVvettUNsvcsW-33wX-2u6sfL26xKvxCqw7gvveuD7zrTZHehcvqjdZvsNXhtYjTxHJ3Yqovm4mfO0fvD6m35hNcvj8_LxRprWsgeF4wTAA4815pXwnLZME2FrkXDm4KkRnVZF3leMkk4rSmn0hpLWFk2zJZ1Q-foespNTT8HE3u1a6M2XVc544eoAGhJSwmSJunVH-nWD8GldgoIJRykTPlzBJNKBx9jMFbtQyIQDkmkRrBqAqsSWDWCVSJ58skTk9ZtTPid_J_pG3FXeUc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1030719937</pqid></control><display><type>article</type><title>Diffusion Approximation of an Array of Controlled Branching Processes</title><source>EBSCOhost Business Source Ultimate</source><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>González, Miguel ; del Puerto, Inés M.</creator><creatorcontrib>González, Miguel ; del Puerto, Inés M.</creatorcontrib><description>In this paper an array of controlled branching processes is considered. Using operator semigroup convergence theorems, it is proved that the fluctuation limit is a diffusion process under the conditions that the offspring and control means tend to be
critical
. As an application of this result, in a parametric framework, it is obtained that the bootstrapping distribution of the weighted conditional least squares estimator of the offspring mean in the critical case is not consistent. From this, it is concluded that the standard parametric bootstrap weighted conditional least squares estimate is asymptotically invalid in the critical case.</description><identifier>ISSN: 1387-5841</identifier><identifier>EISSN: 1573-7713</identifier><identifier>DOI: 10.1007/s11009-012-9285-8</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Approximation ; Arrays ; Asymptotic properties ; Business and Management ; Convergence ; Diffusion ; Economics ; Electrical Engineering ; Least squares method ; Life Sciences ; Mathematical analysis ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Probability ; Statistics ; Studies ; Theorems</subject><ispartof>Methodology and computing in applied probability, 2012-09, Vol.14 (3), p.843-861</ispartof><rights>Springer Science+Business Media, LLC 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-4570117172cc7a8f79d5c38cb8d7d40153b6b422659073b3739fef0566d5f6bd3</citedby><cites>FETCH-LOGICAL-c349t-4570117172cc7a8f79d5c38cb8d7d40153b6b422659073b3739fef0566d5f6bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1030719937/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1030719937?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11668,27903,27904,36039,36040,44342,74641</link.rule.ids></links><search><creatorcontrib>González, Miguel</creatorcontrib><creatorcontrib>del Puerto, Inés M.</creatorcontrib><title>Diffusion Approximation of an Array of Controlled Branching Processes</title><title>Methodology and computing in applied probability</title><addtitle>Methodol Comput Appl Probab</addtitle><description>In this paper an array of controlled branching processes is considered. Using operator semigroup convergence theorems, it is proved that the fluctuation limit is a diffusion process under the conditions that the offspring and control means tend to be
critical
. As an application of this result, in a parametric framework, it is obtained that the bootstrapping distribution of the weighted conditional least squares estimator of the offspring mean in the critical case is not consistent. From this, it is concluded that the standard parametric bootstrap weighted conditional least squares estimate is asymptotically invalid in the critical case.</description><subject>Approximation</subject><subject>Arrays</subject><subject>Asymptotic properties</subject><subject>Business and Management</subject><subject>Convergence</subject><subject>Diffusion</subject><subject>Economics</subject><subject>Electrical Engineering</subject><subject>Least squares method</subject><subject>Life Sciences</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Probability</subject><subject>Statistics</subject><subject>Studies</subject><subject>Theorems</subject><issn>1387-5841</issn><issn>1573-7713</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kEtLxDAUhYMoOI7-AHcFN26iuU3TJMtxHB8woAtdhzZNxg6dZExacP69KXUhgqv74JzD4UPoEsgNEMJvI6QhMYEcy1wwLI7QDBinmHOgx2mngmMmCjhFZzFuCcmB0WKGVvettUNsvcsW-33wX-2u6sfL26xKvxCqw7gvveuD7zrTZHehcvqjdZvsNXhtYjTxHJ3Yqovm4mfO0fvD6m35hNcvj8_LxRprWsgeF4wTAA4815pXwnLZME2FrkXDm4KkRnVZF3leMkk4rSmn0hpLWFk2zJZ1Q-foespNTT8HE3u1a6M2XVc544eoAGhJSwmSJunVH-nWD8GldgoIJRykTPlzBJNKBx9jMFbtQyIQDkmkRrBqAqsSWDWCVSJ58skTk9ZtTPid_J_pG3FXeUc</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>González, Miguel</creator><creator>del Puerto, Inés M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120901</creationdate><title>Diffusion Approximation of an Array of Controlled Branching Processes</title><author>González, Miguel ; del Puerto, Inés M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-4570117172cc7a8f79d5c38cb8d7d40153b6b422659073b3739fef0566d5f6bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Approximation</topic><topic>Arrays</topic><topic>Asymptotic properties</topic><topic>Business and Management</topic><topic>Convergence</topic><topic>Diffusion</topic><topic>Economics</topic><topic>Electrical Engineering</topic><topic>Least squares method</topic><topic>Life Sciences</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Probability</topic><topic>Statistics</topic><topic>Studies</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>González, Miguel</creatorcontrib><creatorcontrib>del Puerto, Inés M.</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Methodology and computing in applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>González, Miguel</au><au>del Puerto, Inés M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffusion Approximation of an Array of Controlled Branching Processes</atitle><jtitle>Methodology and computing in applied probability</jtitle><stitle>Methodol Comput Appl Probab</stitle><date>2012-09-01</date><risdate>2012</risdate><volume>14</volume><issue>3</issue><spage>843</spage><epage>861</epage><pages>843-861</pages><issn>1387-5841</issn><eissn>1573-7713</eissn><abstract>In this paper an array of controlled branching processes is considered. Using operator semigroup convergence theorems, it is proved that the fluctuation limit is a diffusion process under the conditions that the offspring and control means tend to be
critical
. As an application of this result, in a parametric framework, it is obtained that the bootstrapping distribution of the weighted conditional least squares estimator of the offspring mean in the critical case is not consistent. From this, it is concluded that the standard parametric bootstrap weighted conditional least squares estimate is asymptotically invalid in the critical case.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11009-012-9285-8</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1387-5841 |
ispartof | Methodology and computing in applied probability, 2012-09, Vol.14 (3), p.843-861 |
issn | 1387-5841 1573-7713 |
language | eng |
recordid | cdi_proquest_miscellaneous_1136369193 |
source | EBSCOhost Business Source Ultimate; ABI/INFORM Global; Springer Nature |
subjects | Approximation Arrays Asymptotic properties Business and Management Convergence Diffusion Economics Electrical Engineering Least squares method Life Sciences Mathematical analysis Mathematical models Mathematics Mathematics and Statistics Probability Statistics Studies Theorems |
title | Diffusion Approximation of an Array of Controlled Branching Processes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T18%3A40%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffusion%20Approximation%20of%20an%20Array%20of%20Controlled%20Branching%20Processes&rft.jtitle=Methodology%20and%20computing%20in%20applied%20probability&rft.au=Gonz%C3%A1lez,%20Miguel&rft.date=2012-09-01&rft.volume=14&rft.issue=3&rft.spage=843&rft.epage=861&rft.pages=843-861&rft.issn=1387-5841&rft.eissn=1573-7713&rft_id=info:doi/10.1007/s11009-012-9285-8&rft_dat=%3Cproquest_cross%3E1136369193%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-4570117172cc7a8f79d5c38cb8d7d40153b6b422659073b3739fef0566d5f6bd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1030719937&rft_id=info:pmid/&rfr_iscdi=true |