Loading…

Enhanced Li super(+) ion transport in LiNi sub(0.5)Mn sub(1.5)O sub(4) through control of site disorder

High voltage spinel LiNi sub(0.5)Mn sub(1.5)O sub(4) is a very promising cathode material for lithium ion batteries that can be used to power hybrid electrical vehicles (HEVs). Through careful control of the cooling rate after high temperature calcination, LiNi sub(0.5)Mn sub(1.5)O sub(4) spinels wi...

Full description

Saved in:
Bibliographic Details
Published in:Physical chemistry chemical physics : PCCP 2012-09, Vol.14 (39), p.13515-13521
Main Authors: Zheng, Jianming, Xiao, Jie, Yu, Xiqian, Kovarik, Libor, Gu, Meng, Omenya, Fredrick, Chen, Xilin, Yang, Xiao-Qing, Liu, Jun, Graff, Gordon L, Whittingham, MStanley, Zhang, Ji-Guang
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 13521
container_issue 39
container_start_page 13515
container_title Physical chemistry chemical physics : PCCP
container_volume 14
creator Zheng, Jianming
Xiao, Jie
Yu, Xiqian
Kovarik, Libor
Gu, Meng
Omenya, Fredrick
Chen, Xilin
Yang, Xiao-Qing
Liu, Jun
Graff, Gordon L
Whittingham, MStanley
Zhang, Ji-Guang
description High voltage spinel LiNi sub(0.5)Mn sub(1.5)O sub(4) is a very promising cathode material for lithium ion batteries that can be used to power hybrid electrical vehicles (HEVs). Through careful control of the cooling rate after high temperature calcination, LiNi sub(0.5)Mn sub(1.5)O sub(4) spinels with different disordered phase and/or Mn super(3+) contents have been synthesized. It is revealed that during the slow cooling process (
doi_str_mv 10.1039/c2cp43007j
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1136461701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1136461701</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_11364617013</originalsourceid><addsrcrecordid>eNqVykFPwkAQhuGNkURULv6CObYx4Ay7tHImGA4gF-6kbBe6pO7Une3_B4nx7ul7kvdT6oVwQqjnb3ZqO6MRy_OdGpIp9HiO7-b-z2XxoB5FzohIM9JDdVqGpgrW1bD2IH3nYvaag-cAKVZBOo4JfLjGz598yHAyyzfhRrpye5PJITWR-1MDlkOK3AIfQXxyUHvhWLv4rAbHqhU3-t0nlX0sd4vVuIv83TtJ-y8v1rVtFRz3sifShSmoRNL_uF4Ad-BNtg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1136461701</pqid></control><display><type>article</type><title>Enhanced Li super(+) ion transport in LiNi sub(0.5)Mn sub(1.5)O sub(4) through control of site disorder</title><source>Royal Society of Chemistry</source><creator>Zheng, Jianming ; Xiao, Jie ; Yu, Xiqian ; Kovarik, Libor ; Gu, Meng ; Omenya, Fredrick ; Chen, Xilin ; Yang, Xiao-Qing ; Liu, Jun ; Graff, Gordon L ; Whittingham, MStanley ; Zhang, Ji-Guang</creator><creatorcontrib>Zheng, Jianming ; Xiao, Jie ; Yu, Xiqian ; Kovarik, Libor ; Gu, Meng ; Omenya, Fredrick ; Chen, Xilin ; Yang, Xiao-Qing ; Liu, Jun ; Graff, Gordon L ; Whittingham, MStanley ; Zhang, Ji-Guang</creatorcontrib><description>High voltage spinel LiNi sub(0.5)Mn sub(1.5)O sub(4) is a very promising cathode material for lithium ion batteries that can be used to power hybrid electrical vehicles (HEVs). Through careful control of the cooling rate after high temperature calcination, LiNi sub(0.5)Mn sub(1.5)O sub(4) spinels with different disordered phase and/or Mn super(3+) contents have been synthesized. It is revealed that during the slow cooling process (&lt;3 degree C min super(-1)), oxygen deficiency is reduced by the oxygen intake, thus the residual Mn super(3+) amount is also decreased in the spinel due to charge neutrality. In situX-ray diffraction (XRD) demonstrates that the existence of a disordered phase fundamentally changes the spinel phase transition pathways during the electrochemical charge-discharge process. The presence of an appropriate amount of oxygen deficiency and/or Mn super(3+) is critical to accelerate the Li super(+) ion transport within the crystalline structure, which is beneficial to enhance the electrochemical performance of LiNi sub(0.5)Mn sub(1.5)O sub(4). LiNi sub(0.5)Mn sub(1.5)O sub(4) with an appropriate amount of disordered phase offers high rate capability (96 mAh g super(-1) at 10 degree C) and excellent cycling performance with 94.8% capacity retention after 300 cycles. The fundamental findings in this work can be widely applied to guide the synthesis of other mixed oxides or spinels as high performance electrode materials for lithium ion batteries.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c2cp43007j</identifier><language>eng</language><subject>Charge ; Electrode materials ; High voltages ; Hybrid vehicles ; Ion transport ; Lithium batteries ; Phase transformations ; Spinel</subject><ispartof>Physical chemistry chemical physics : PCCP, 2012-09, Vol.14 (39), p.13515-13521</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zheng, Jianming</creatorcontrib><creatorcontrib>Xiao, Jie</creatorcontrib><creatorcontrib>Yu, Xiqian</creatorcontrib><creatorcontrib>Kovarik, Libor</creatorcontrib><creatorcontrib>Gu, Meng</creatorcontrib><creatorcontrib>Omenya, Fredrick</creatorcontrib><creatorcontrib>Chen, Xilin</creatorcontrib><creatorcontrib>Yang, Xiao-Qing</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><creatorcontrib>Graff, Gordon L</creatorcontrib><creatorcontrib>Whittingham, MStanley</creatorcontrib><creatorcontrib>Zhang, Ji-Guang</creatorcontrib><title>Enhanced Li super(+) ion transport in LiNi sub(0.5)Mn sub(1.5)O sub(4) through control of site disorder</title><title>Physical chemistry chemical physics : PCCP</title><description>High voltage spinel LiNi sub(0.5)Mn sub(1.5)O sub(4) is a very promising cathode material for lithium ion batteries that can be used to power hybrid electrical vehicles (HEVs). Through careful control of the cooling rate after high temperature calcination, LiNi sub(0.5)Mn sub(1.5)O sub(4) spinels with different disordered phase and/or Mn super(3+) contents have been synthesized. It is revealed that during the slow cooling process (&lt;3 degree C min super(-1)), oxygen deficiency is reduced by the oxygen intake, thus the residual Mn super(3+) amount is also decreased in the spinel due to charge neutrality. In situX-ray diffraction (XRD) demonstrates that the existence of a disordered phase fundamentally changes the spinel phase transition pathways during the electrochemical charge-discharge process. The presence of an appropriate amount of oxygen deficiency and/or Mn super(3+) is critical to accelerate the Li super(+) ion transport within the crystalline structure, which is beneficial to enhance the electrochemical performance of LiNi sub(0.5)Mn sub(1.5)O sub(4). LiNi sub(0.5)Mn sub(1.5)O sub(4) with an appropriate amount of disordered phase offers high rate capability (96 mAh g super(-1) at 10 degree C) and excellent cycling performance with 94.8% capacity retention after 300 cycles. The fundamental findings in this work can be widely applied to guide the synthesis of other mixed oxides or spinels as high performance electrode materials for lithium ion batteries.</description><subject>Charge</subject><subject>Electrode materials</subject><subject>High voltages</subject><subject>Hybrid vehicles</subject><subject>Ion transport</subject><subject>Lithium batteries</subject><subject>Phase transformations</subject><subject>Spinel</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqVykFPwkAQhuGNkURULv6CObYx4Ay7tHImGA4gF-6kbBe6pO7Une3_B4nx7ul7kvdT6oVwQqjnb3ZqO6MRy_OdGpIp9HiO7-b-z2XxoB5FzohIM9JDdVqGpgrW1bD2IH3nYvaag-cAKVZBOo4JfLjGz598yHAyyzfhRrpye5PJITWR-1MDlkOK3AIfQXxyUHvhWLv4rAbHqhU3-t0nlX0sd4vVuIv83TtJ-y8v1rVtFRz3sifShSmoRNL_uF4Ad-BNtg</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Zheng, Jianming</creator><creator>Xiao, Jie</creator><creator>Yu, Xiqian</creator><creator>Kovarik, Libor</creator><creator>Gu, Meng</creator><creator>Omenya, Fredrick</creator><creator>Chen, Xilin</creator><creator>Yang, Xiao-Qing</creator><creator>Liu, Jun</creator><creator>Graff, Gordon L</creator><creator>Whittingham, MStanley</creator><creator>Zhang, Ji-Guang</creator><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20120901</creationdate><title>Enhanced Li super(+) ion transport in LiNi sub(0.5)Mn sub(1.5)O sub(4) through control of site disorder</title><author>Zheng, Jianming ; Xiao, Jie ; Yu, Xiqian ; Kovarik, Libor ; Gu, Meng ; Omenya, Fredrick ; Chen, Xilin ; Yang, Xiao-Qing ; Liu, Jun ; Graff, Gordon L ; Whittingham, MStanley ; Zhang, Ji-Guang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_11364617013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Charge</topic><topic>Electrode materials</topic><topic>High voltages</topic><topic>Hybrid vehicles</topic><topic>Ion transport</topic><topic>Lithium batteries</topic><topic>Phase transformations</topic><topic>Spinel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Jianming</creatorcontrib><creatorcontrib>Xiao, Jie</creatorcontrib><creatorcontrib>Yu, Xiqian</creatorcontrib><creatorcontrib>Kovarik, Libor</creatorcontrib><creatorcontrib>Gu, Meng</creatorcontrib><creatorcontrib>Omenya, Fredrick</creatorcontrib><creatorcontrib>Chen, Xilin</creatorcontrib><creatorcontrib>Yang, Xiao-Qing</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><creatorcontrib>Graff, Gordon L</creatorcontrib><creatorcontrib>Whittingham, MStanley</creatorcontrib><creatorcontrib>Zhang, Ji-Guang</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Jianming</au><au>Xiao, Jie</au><au>Yu, Xiqian</au><au>Kovarik, Libor</au><au>Gu, Meng</au><au>Omenya, Fredrick</au><au>Chen, Xilin</au><au>Yang, Xiao-Qing</au><au>Liu, Jun</au><au>Graff, Gordon L</au><au>Whittingham, MStanley</au><au>Zhang, Ji-Guang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Li super(+) ion transport in LiNi sub(0.5)Mn sub(1.5)O sub(4) through control of site disorder</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2012-09-01</date><risdate>2012</risdate><volume>14</volume><issue>39</issue><spage>13515</spage><epage>13521</epage><pages>13515-13521</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>High voltage spinel LiNi sub(0.5)Mn sub(1.5)O sub(4) is a very promising cathode material for lithium ion batteries that can be used to power hybrid electrical vehicles (HEVs). Through careful control of the cooling rate after high temperature calcination, LiNi sub(0.5)Mn sub(1.5)O sub(4) spinels with different disordered phase and/or Mn super(3+) contents have been synthesized. It is revealed that during the slow cooling process (&lt;3 degree C min super(-1)), oxygen deficiency is reduced by the oxygen intake, thus the residual Mn super(3+) amount is also decreased in the spinel due to charge neutrality. In situX-ray diffraction (XRD) demonstrates that the existence of a disordered phase fundamentally changes the spinel phase transition pathways during the electrochemical charge-discharge process. The presence of an appropriate amount of oxygen deficiency and/or Mn super(3+) is critical to accelerate the Li super(+) ion transport within the crystalline structure, which is beneficial to enhance the electrochemical performance of LiNi sub(0.5)Mn sub(1.5)O sub(4). LiNi sub(0.5)Mn sub(1.5)O sub(4) with an appropriate amount of disordered phase offers high rate capability (96 mAh g super(-1) at 10 degree C) and excellent cycling performance with 94.8% capacity retention after 300 cycles. The fundamental findings in this work can be widely applied to guide the synthesis of other mixed oxides or spinels as high performance electrode materials for lithium ion batteries.</abstract><doi>10.1039/c2cp43007j</doi></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2012-09, Vol.14 (39), p.13515-13521
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_miscellaneous_1136461701
source Royal Society of Chemistry
subjects Charge
Electrode materials
High voltages
Hybrid vehicles
Ion transport
Lithium batteries
Phase transformations
Spinel
title Enhanced Li super(+) ion transport in LiNi sub(0.5)Mn sub(1.5)O sub(4) through control of site disorder
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A55%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Li%20super(+)%20ion%20transport%20in%20LiNi%20sub(0.5)Mn%20sub(1.5)O%20sub(4)%20through%20control%20of%20site%20disorder&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Zheng,%20Jianming&rft.date=2012-09-01&rft.volume=14&rft.issue=39&rft.spage=13515&rft.epage=13521&rft.pages=13515-13521&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c2cp43007j&rft_dat=%3Cproquest%3E1136461701%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_miscellaneous_11364617013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1136461701&rft_id=info:pmid/&rfr_iscdi=true