Loading…

Improving optical measurement uncertainty with combined multitool metrology using a Bayesian approach

Recently, there has been significant research investigating new optical technologies for dimensional metrology of features 22 nm in critical dimension and smaller. When modeling optical measurements, a library of curves is assembled through the simulation of a multidimensional parameter space. A non...

Full description

Saved in:
Bibliographic Details
Published in:Applied optics (2004) 2012-09, Vol.51 (25), p.6196-6206
Main Authors: Zhang, Nien Fan, Silver, Richard M, Zhou, Hui, Barnes, Bryan M
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recently, there has been significant research investigating new optical technologies for dimensional metrology of features 22 nm in critical dimension and smaller. When modeling optical measurements, a library of curves is assembled through the simulation of a multidimensional parameter space. A nonlinear regression routine described in this paper is then used to identify an optimum set of parameters that yields the closest experiment-to-theory agreement. However, parametric correlation, measurement noise, and model inaccuracy all lead to measurement uncertainty in the fitting process for optical critical dimension measurements. To improve the optical measurements, other techniques such as atomic force microscopy and scanning electronic microscopy can also be used to provide supplemental a priori information. In this paper, a Bayesian statistical approach is proposed to allow the combination of different measurement techniques that are based on different physical measurements. The effect of this hybrid metrology approach will be shown to reduce the uncertainties of the parameter estimators.
ISSN:1559-128X
2155-3165
DOI:10.1364/AO.51.006196