Loading…

Aerosol formation and hydrogen co-deposition by colliding ablation plasma plumes of lithium and lead

In a high-repetition inertial fusion reactor, along with pellet implosions, the interior of target chamber is to be exposed to high-energy, short pulses of X-ray, unburned DT and He ash particles and pellet debris. As a result, wall materials will be subjected to ablation, ejecting particles in the...

Full description

Saved in:
Bibliographic Details
Published in:Fusion engineering and design 2012-10, Vol.87 (10), p.1760-1764
Main Authors: Hirooka, Yoshi, Omoto, Naoki, Oishi, Tatsuya, Tanaka, Kazuo A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c348t-9237be70f045d21f535f1bc4066c967711eb9d05239bb38f5d6dc5ff46514e43
cites cdi_FETCH-LOGICAL-c348t-9237be70f045d21f535f1bc4066c967711eb9d05239bb38f5d6dc5ff46514e43
container_end_page 1764
container_issue 10
container_start_page 1760
container_title Fusion engineering and design
container_volume 87
creator Hirooka, Yoshi
Omoto, Naoki
Oishi, Tatsuya
Tanaka, Kazuo A.
description In a high-repetition inertial fusion reactor, along with pellet implosions, the interior of target chamber is to be exposed to high-energy, short pulses of X-ray, unburned DT and He ash particles and pellet debris. As a result, wall materials will be subjected to ablation, ejecting particles in the plasma state to collide with each other in the center of volume. The interaction dynamics of ablation plasmas of lithium and lead, candidate first wall materials, has been investigated in the deposited energy density range from 3 to 10J/cm2/pulse at a repetition rate of 10Hz, each 6ns long. The plasma density and electron temperature of colliding ablation plumes have been found to vary from the order of 108–10131/cm3 and from 0.7 to 1.5eV, respectively. The formation of aerosol in the form of droplet has been observed with diameters between 100nm and 10μm. Also, hydrogen co-deposition has been found to occur particularly for colliding plumes of lithium, resulting in the H/Li atomic ratio from 0.15 to 0.27 in the hydrogen partial pressure range from 10 to 50Pa.
doi_str_mv 10.1016/j.fusengdes.2011.10.003
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1136538846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0920379611005898</els_id><sourcerecordid>1136538846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-9237be70f045d21f535f1bc4066c967711eb9d05239bb38f5d6dc5ff46514e43</originalsourceid><addsrcrecordid>eNqFUF1LwzAUDaLgnP4G--hLa9K0Sfs4hl8w8GXvIU1utoy0mUkr7N-breKrcOHAPR9wDkKPBBcEE_Z8KMwUYdhpiEWJCUnfAmN6hRak4TTnpGXXaIHbEueUt-wW3cV4wJjwdAukVxB89C4zPvRytH7I5KCz_UkHv4MhUz7XcPTRXqjulB7OWW2HXSY7NxuOTsZeJph6iJk3mbPj3k79JcmB1PfoxkgX4eEXl2j7-rJdv-ebz7eP9WqTK1o1Y96WlHfAscFVrUtialob0qkKM6Zaxjkh0LUa1yVtu442ptZMq9qYitWkgoou0dMcewz-a4I4it5GBc7JAfwUBSGU1bRpKpakfJaq1D4GMOIYbC_DSRAszrOKg_ibVZxnPRNp1uRczU5IRb4tBBGVhUGBtgHUKLS3_2b8AC_Ahm8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1136538846</pqid></control><display><type>article</type><title>Aerosol formation and hydrogen co-deposition by colliding ablation plasma plumes of lithium and lead</title><source>ScienceDirect Freedom Collection</source><creator>Hirooka, Yoshi ; Omoto, Naoki ; Oishi, Tatsuya ; Tanaka, Kazuo A.</creator><creatorcontrib>Hirooka, Yoshi ; Omoto, Naoki ; Oishi, Tatsuya ; Tanaka, Kazuo A.</creatorcontrib><description>In a high-repetition inertial fusion reactor, along with pellet implosions, the interior of target chamber is to be exposed to high-energy, short pulses of X-ray, unburned DT and He ash particles and pellet debris. As a result, wall materials will be subjected to ablation, ejecting particles in the plasma state to collide with each other in the center of volume. The interaction dynamics of ablation plasmas of lithium and lead, candidate first wall materials, has been investigated in the deposited energy density range from 3 to 10J/cm2/pulse at a repetition rate of 10Hz, each 6ns long. The plasma density and electron temperature of colliding ablation plumes have been found to vary from the order of 108–10131/cm3 and from 0.7 to 1.5eV, respectively. The formation of aerosol in the form of droplet has been observed with diameters between 100nm and 10μm. Also, hydrogen co-deposition has been found to occur particularly for colliding plumes of lithium, resulting in the H/Li atomic ratio from 0.15 to 0.27 in the hydrogen partial pressure range from 10 to 50Pa.</description><identifier>ISSN: 0920-3796</identifier><identifier>EISSN: 1873-7196</identifier><identifier>DOI: 10.1016/j.fusengdes.2011.10.003</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Ablation ; Aerosol formation ; Aerosols ; Ashes ; Chamber clearing ; Droplets ; Hydrogen co-deposition ; Inertial fusion reactor ; Lead ; Lithium ; Pellets ; Plumes ; Tritium inventory ; Walls</subject><ispartof>Fusion engineering and design, 2012-10, Vol.87 (10), p.1760-1764</ispartof><rights>2011 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-9237be70f045d21f535f1bc4066c967711eb9d05239bb38f5d6dc5ff46514e43</citedby><cites>FETCH-LOGICAL-c348t-9237be70f045d21f535f1bc4066c967711eb9d05239bb38f5d6dc5ff46514e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hirooka, Yoshi</creatorcontrib><creatorcontrib>Omoto, Naoki</creatorcontrib><creatorcontrib>Oishi, Tatsuya</creatorcontrib><creatorcontrib>Tanaka, Kazuo A.</creatorcontrib><title>Aerosol formation and hydrogen co-deposition by colliding ablation plasma plumes of lithium and lead</title><title>Fusion engineering and design</title><description>In a high-repetition inertial fusion reactor, along with pellet implosions, the interior of target chamber is to be exposed to high-energy, short pulses of X-ray, unburned DT and He ash particles and pellet debris. As a result, wall materials will be subjected to ablation, ejecting particles in the plasma state to collide with each other in the center of volume. The interaction dynamics of ablation plasmas of lithium and lead, candidate first wall materials, has been investigated in the deposited energy density range from 3 to 10J/cm2/pulse at a repetition rate of 10Hz, each 6ns long. The plasma density and electron temperature of colliding ablation plumes have been found to vary from the order of 108–10131/cm3 and from 0.7 to 1.5eV, respectively. The formation of aerosol in the form of droplet has been observed with diameters between 100nm and 10μm. Also, hydrogen co-deposition has been found to occur particularly for colliding plumes of lithium, resulting in the H/Li atomic ratio from 0.15 to 0.27 in the hydrogen partial pressure range from 10 to 50Pa.</description><subject>Ablation</subject><subject>Aerosol formation</subject><subject>Aerosols</subject><subject>Ashes</subject><subject>Chamber clearing</subject><subject>Droplets</subject><subject>Hydrogen co-deposition</subject><subject>Inertial fusion reactor</subject><subject>Lead</subject><subject>Lithium</subject><subject>Pellets</subject><subject>Plumes</subject><subject>Tritium inventory</subject><subject>Walls</subject><issn>0920-3796</issn><issn>1873-7196</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFUF1LwzAUDaLgnP4G--hLa9K0Sfs4hl8w8GXvIU1utoy0mUkr7N-breKrcOHAPR9wDkKPBBcEE_Z8KMwUYdhpiEWJCUnfAmN6hRak4TTnpGXXaIHbEueUt-wW3cV4wJjwdAukVxB89C4zPvRytH7I5KCz_UkHv4MhUz7XcPTRXqjulB7OWW2HXSY7NxuOTsZeJph6iJk3mbPj3k79JcmB1PfoxkgX4eEXl2j7-rJdv-ebz7eP9WqTK1o1Y96WlHfAscFVrUtialob0qkKM6Zaxjkh0LUa1yVtu442ptZMq9qYitWkgoou0dMcewz-a4I4it5GBc7JAfwUBSGU1bRpKpakfJaq1D4GMOIYbC_DSRAszrOKg_ibVZxnPRNp1uRczU5IRb4tBBGVhUGBtgHUKLS3_2b8AC_Ahm8</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Hirooka, Yoshi</creator><creator>Omoto, Naoki</creator><creator>Oishi, Tatsuya</creator><creator>Tanaka, Kazuo A.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201210</creationdate><title>Aerosol formation and hydrogen co-deposition by colliding ablation plasma plumes of lithium and lead</title><author>Hirooka, Yoshi ; Omoto, Naoki ; Oishi, Tatsuya ; Tanaka, Kazuo A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-9237be70f045d21f535f1bc4066c967711eb9d05239bb38f5d6dc5ff46514e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Ablation</topic><topic>Aerosol formation</topic><topic>Aerosols</topic><topic>Ashes</topic><topic>Chamber clearing</topic><topic>Droplets</topic><topic>Hydrogen co-deposition</topic><topic>Inertial fusion reactor</topic><topic>Lead</topic><topic>Lithium</topic><topic>Pellets</topic><topic>Plumes</topic><topic>Tritium inventory</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hirooka, Yoshi</creatorcontrib><creatorcontrib>Omoto, Naoki</creatorcontrib><creatorcontrib>Oishi, Tatsuya</creatorcontrib><creatorcontrib>Tanaka, Kazuo A.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Fusion engineering and design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hirooka, Yoshi</au><au>Omoto, Naoki</au><au>Oishi, Tatsuya</au><au>Tanaka, Kazuo A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aerosol formation and hydrogen co-deposition by colliding ablation plasma plumes of lithium and lead</atitle><jtitle>Fusion engineering and design</jtitle><date>2012-10</date><risdate>2012</risdate><volume>87</volume><issue>10</issue><spage>1760</spage><epage>1764</epage><pages>1760-1764</pages><issn>0920-3796</issn><eissn>1873-7196</eissn><abstract>In a high-repetition inertial fusion reactor, along with pellet implosions, the interior of target chamber is to be exposed to high-energy, short pulses of X-ray, unburned DT and He ash particles and pellet debris. As a result, wall materials will be subjected to ablation, ejecting particles in the plasma state to collide with each other in the center of volume. The interaction dynamics of ablation plasmas of lithium and lead, candidate first wall materials, has been investigated in the deposited energy density range from 3 to 10J/cm2/pulse at a repetition rate of 10Hz, each 6ns long. The plasma density and electron temperature of colliding ablation plumes have been found to vary from the order of 108–10131/cm3 and from 0.7 to 1.5eV, respectively. The formation of aerosol in the form of droplet has been observed with diameters between 100nm and 10μm. Also, hydrogen co-deposition has been found to occur particularly for colliding plumes of lithium, resulting in the H/Li atomic ratio from 0.15 to 0.27 in the hydrogen partial pressure range from 10 to 50Pa.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.fusengdes.2011.10.003</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0920-3796
ispartof Fusion engineering and design, 2012-10, Vol.87 (10), p.1760-1764
issn 0920-3796
1873-7196
language eng
recordid cdi_proquest_miscellaneous_1136538846
source ScienceDirect Freedom Collection
subjects Ablation
Aerosol formation
Aerosols
Ashes
Chamber clearing
Droplets
Hydrogen co-deposition
Inertial fusion reactor
Lead
Lithium
Pellets
Plumes
Tritium inventory
Walls
title Aerosol formation and hydrogen co-deposition by colliding ablation plasma plumes of lithium and lead
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A00%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aerosol%20formation%20and%20hydrogen%20co-deposition%20by%20colliding%20ablation%20plasma%20plumes%20of%20lithium%20and%20lead&rft.jtitle=Fusion%20engineering%20and%20design&rft.au=Hirooka,%20Yoshi&rft.date=2012-10&rft.volume=87&rft.issue=10&rft.spage=1760&rft.epage=1764&rft.pages=1760-1764&rft.issn=0920-3796&rft.eissn=1873-7196&rft_id=info:doi/10.1016/j.fusengdes.2011.10.003&rft_dat=%3Cproquest_cross%3E1136538846%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c348t-9237be70f045d21f535f1bc4066c967711eb9d05239bb38f5d6dc5ff46514e43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1136538846&rft_id=info:pmid/&rfr_iscdi=true