Loading…
Engineering Copper Hyperaccumulation in Plants by Expressing a Prokaryotic copC Gene
In this work, engineering Cu-hyperaccumulation in plants was approached. First, the copC gene from Pseudomonas sp. Az13, encoding a periplasmic Cu-binding protein, was expressed in Arabidopsis thaliana driven by the CaMV35S promoter (transgenic lines 35S-copC). 35S-copC lines showed up to 5-fold inc...
Saved in:
Published in: | Environmental science & technology 2012-11, Vol.46 (21), p.12088-12097 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a373t-2987ad6ca5d71cb512b08560b67d2043f1787863fc169ad5cfbc12969d6a293d3 |
---|---|
cites | cdi_FETCH-LOGICAL-a373t-2987ad6ca5d71cb512b08560b67d2043f1787863fc169ad5cfbc12969d6a293d3 |
container_end_page | 12097 |
container_issue | 21 |
container_start_page | 12088 |
container_title | Environmental science & technology |
container_volume | 46 |
creator | Rodríguez-Llorente, Ignacio D Lafuente, Alejandro Doukkali, Bouchra Caviedes, Miguel A Pajuelo, Eloisa |
description | In this work, engineering Cu-hyperaccumulation in plants was approached. First, the copC gene from Pseudomonas sp. Az13, encoding a periplasmic Cu-binding protein, was expressed in Arabidopsis thaliana driven by the CaMV35S promoter (transgenic lines 35S-copC). 35S-copC lines showed up to 5-fold increased Cu accumulation in roots (up to 2000 μg Cu. g–1) and shoots (up to 400 μg Cu. g–1), compared to untransformed plants, over the limits established for Cu-hyperaccumulators. 35S lines showed enhanced Cu sensitivity. Second, copC was engineered under the control of the cab1 (chlorophyll a/b binding protein 1) promoter, in order to drive copC expression to the shoots (transgenic lines cab1-copC). cab1-copC lines showed increased Cu translocation factors (twice that of wild-type plants) and also displayed enhanced Cu sensitivity. Finally, subcellular targeting the CopC protein to plant vacuoles was addressed by expressing a modified copC gene containing specific vacuole sorting determinants (transgenic lines 35S-copC-V). Unexpectedly, increased Cu-accumulation was not achievedneither in roots nor in shootswhen compared to 35S-copC lines. Conversely, 35S-copC-V lines did display greatly enhanced Cu-hypersensitivity. Our results demonstrate the feasibility of obtaining Cu-hyperaccumulators by engineering a prokaryotic Cu-binding protein, but they highlight the difficulty of altering the exquisite Cu homeostasis in plants. |
doi_str_mv | 10.1021/es300842s |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1141536542</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1141536542</sourcerecordid><originalsourceid>FETCH-LOGICAL-a373t-2987ad6ca5d71cb512b08560b67d2043f1787863fc169ad5cfbc12969d6a293d3</originalsourceid><addsrcrecordid>eNpl0MtKxDAUBuAgio6XhS8gARF0UT0nadJ2KcPoCIIuFNyVNE2l2klq0oLz9mZwvKCbnM2Xkz8_IYcI5wgML0zgAHnKwgaZoGCQiFzgJpkAIE8KLp92yG4ILwDAOOTbZCcOBiLNJuRhZp9ba4xv7TOdur43ns6X8VRaj4uxU0PrLG0tve-UHQKtlnT23nsTwuqCovfevSq_dEOrqXb9lF4ba_bJVqO6YA7Wc488Xs0epvPk9u76Znp5myie8SFhRZ6pWmol6gx1JZBVkAsJlcxqBilvMMuzXPJGoyxULXRTaWSFLGqpWMFrvkdOP_f23r2NJgzlog3adDGqcWMoEVMUXIqURXr8h7640duYbqWYLCRwEdXZp9LeheBNU_a-XcT_lQjlquryu-poj9Ybx2ph6m_51W0EJ2ugglZd45XVbfhxUnLMOf44pcOvVP8e_ABzepB8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1142696035</pqid></control><display><type>article</type><title>Engineering Copper Hyperaccumulation in Plants by Expressing a Prokaryotic copC Gene</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Rodríguez-Llorente, Ignacio D ; Lafuente, Alejandro ; Doukkali, Bouchra ; Caviedes, Miguel A ; Pajuelo, Eloisa</creator><creatorcontrib>Rodríguez-Llorente, Ignacio D ; Lafuente, Alejandro ; Doukkali, Bouchra ; Caviedes, Miguel A ; Pajuelo, Eloisa</creatorcontrib><description>In this work, engineering Cu-hyperaccumulation in plants was approached. First, the copC gene from Pseudomonas sp. Az13, encoding a periplasmic Cu-binding protein, was expressed in Arabidopsis thaliana driven by the CaMV35S promoter (transgenic lines 35S-copC). 35S-copC lines showed up to 5-fold increased Cu accumulation in roots (up to 2000 μg Cu. g–1) and shoots (up to 400 μg Cu. g–1), compared to untransformed plants, over the limits established for Cu-hyperaccumulators. 35S lines showed enhanced Cu sensitivity. Second, copC was engineered under the control of the cab1 (chlorophyll a/b binding protein 1) promoter, in order to drive copC expression to the shoots (transgenic lines cab1-copC). cab1-copC lines showed increased Cu translocation factors (twice that of wild-type plants) and also displayed enhanced Cu sensitivity. Finally, subcellular targeting the CopC protein to plant vacuoles was addressed by expressing a modified copC gene containing specific vacuole sorting determinants (transgenic lines 35S-copC-V). Unexpectedly, increased Cu-accumulation was not achievedneither in roots nor in shootswhen compared to 35S-copC lines. Conversely, 35S-copC-V lines did display greatly enhanced Cu-hypersensitivity. Our results demonstrate the feasibility of obtaining Cu-hyperaccumulators by engineering a prokaryotic Cu-binding protein, but they highlight the difficulty of altering the exquisite Cu homeostasis in plants.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es300842s</identifier><identifier>PMID: 23020547</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Bacterial Proteins - genetics ; Biodegradation, Environmental ; Biological and medical sciences ; Biotechnology ; Copper - metabolism ; Decontamination. Miscellaneous ; Earth sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; Environment and pollution ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; Gene expression ; Gram-negative bacteria ; Homeostasis ; Industrial applications and implications. Economical aspects ; Miscellaneous ; Plant Roots - metabolism ; Plant Shoots - metabolism ; Plants, Genetically Modified - genetics ; Plants, Genetically Modified - metabolism ; Pollution ; Pollution, environment geology ; Prokaryotes ; Proteins ; Pseudomonas - genetics ; Soil and sediments pollution ; Soil Pollutants - metabolism ; Transgenic plants</subject><ispartof>Environmental science & technology, 2012-11, Vol.46 (21), p.12088-12097</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><rights>Copyright American Chemical Society Nov 6, 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a373t-2987ad6ca5d71cb512b08560b67d2043f1787863fc169ad5cfbc12969d6a293d3</citedby><cites>FETCH-LOGICAL-a373t-2987ad6ca5d71cb512b08560b67d2043f1787863fc169ad5cfbc12969d6a293d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26631831$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23020547$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rodríguez-Llorente, Ignacio D</creatorcontrib><creatorcontrib>Lafuente, Alejandro</creatorcontrib><creatorcontrib>Doukkali, Bouchra</creatorcontrib><creatorcontrib>Caviedes, Miguel A</creatorcontrib><creatorcontrib>Pajuelo, Eloisa</creatorcontrib><title>Engineering Copper Hyperaccumulation in Plants by Expressing a Prokaryotic copC Gene</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>In this work, engineering Cu-hyperaccumulation in plants was approached. First, the copC gene from Pseudomonas sp. Az13, encoding a periplasmic Cu-binding protein, was expressed in Arabidopsis thaliana driven by the CaMV35S promoter (transgenic lines 35S-copC). 35S-copC lines showed up to 5-fold increased Cu accumulation in roots (up to 2000 μg Cu. g–1) and shoots (up to 400 μg Cu. g–1), compared to untransformed plants, over the limits established for Cu-hyperaccumulators. 35S lines showed enhanced Cu sensitivity. Second, copC was engineered under the control of the cab1 (chlorophyll a/b binding protein 1) promoter, in order to drive copC expression to the shoots (transgenic lines cab1-copC). cab1-copC lines showed increased Cu translocation factors (twice that of wild-type plants) and also displayed enhanced Cu sensitivity. Finally, subcellular targeting the CopC protein to plant vacuoles was addressed by expressing a modified copC gene containing specific vacuole sorting determinants (transgenic lines 35S-copC-V). Unexpectedly, increased Cu-accumulation was not achievedneither in roots nor in shootswhen compared to 35S-copC lines. Conversely, 35S-copC-V lines did display greatly enhanced Cu-hypersensitivity. Our results demonstrate the feasibility of obtaining Cu-hyperaccumulators by engineering a prokaryotic Cu-binding protein, but they highlight the difficulty of altering the exquisite Cu homeostasis in plants.</description><subject>Applied sciences</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Bacterial Proteins - genetics</subject><subject>Biodegradation, Environmental</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Copper - metabolism</subject><subject>Decontamination. Miscellaneous</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Environment and pollution</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression</subject><subject>Gram-negative bacteria</subject><subject>Homeostasis</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Miscellaneous</subject><subject>Plant Roots - metabolism</subject><subject>Plant Shoots - metabolism</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Plants, Genetically Modified - metabolism</subject><subject>Pollution</subject><subject>Pollution, environment geology</subject><subject>Prokaryotes</subject><subject>Proteins</subject><subject>Pseudomonas - genetics</subject><subject>Soil and sediments pollution</subject><subject>Soil Pollutants - metabolism</subject><subject>Transgenic plants</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpl0MtKxDAUBuAgio6XhS8gARF0UT0nadJ2KcPoCIIuFNyVNE2l2klq0oLz9mZwvKCbnM2Xkz8_IYcI5wgML0zgAHnKwgaZoGCQiFzgJpkAIE8KLp92yG4ILwDAOOTbZCcOBiLNJuRhZp9ba4xv7TOdur43ns6X8VRaj4uxU0PrLG0tve-UHQKtlnT23nsTwuqCovfevSq_dEOrqXb9lF4ba_bJVqO6YA7Wc488Xs0epvPk9u76Znp5myie8SFhRZ6pWmol6gx1JZBVkAsJlcxqBilvMMuzXPJGoyxULXRTaWSFLGqpWMFrvkdOP_f23r2NJgzlog3adDGqcWMoEVMUXIqURXr8h7640duYbqWYLCRwEdXZp9LeheBNU_a-XcT_lQjlquryu-poj9Ybx2ph6m_51W0EJ2ugglZd45XVbfhxUnLMOf44pcOvVP8e_ABzepB8</recordid><startdate>20121106</startdate><enddate>20121106</enddate><creator>Rodríguez-Llorente, Ignacio D</creator><creator>Lafuente, Alejandro</creator><creator>Doukkali, Bouchra</creator><creator>Caviedes, Miguel A</creator><creator>Pajuelo, Eloisa</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20121106</creationdate><title>Engineering Copper Hyperaccumulation in Plants by Expressing a Prokaryotic copC Gene</title><author>Rodríguez-Llorente, Ignacio D ; Lafuente, Alejandro ; Doukkali, Bouchra ; Caviedes, Miguel A ; Pajuelo, Eloisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a373t-2987ad6ca5d71cb512b08560b67d2043f1787863fc169ad5cfbc12969d6a293d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Bacterial Proteins - genetics</topic><topic>Biodegradation, Environmental</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Copper - metabolism</topic><topic>Decontamination. Miscellaneous</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Environment and pollution</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression</topic><topic>Gram-negative bacteria</topic><topic>Homeostasis</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Miscellaneous</topic><topic>Plant Roots - metabolism</topic><topic>Plant Shoots - metabolism</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Plants, Genetically Modified - metabolism</topic><topic>Pollution</topic><topic>Pollution, environment geology</topic><topic>Prokaryotes</topic><topic>Proteins</topic><topic>Pseudomonas - genetics</topic><topic>Soil and sediments pollution</topic><topic>Soil Pollutants - metabolism</topic><topic>Transgenic plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodríguez-Llorente, Ignacio D</creatorcontrib><creatorcontrib>Lafuente, Alejandro</creatorcontrib><creatorcontrib>Doukkali, Bouchra</creatorcontrib><creatorcontrib>Caviedes, Miguel A</creatorcontrib><creatorcontrib>Pajuelo, Eloisa</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodríguez-Llorente, Ignacio D</au><au>Lafuente, Alejandro</au><au>Doukkali, Bouchra</au><au>Caviedes, Miguel A</au><au>Pajuelo, Eloisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering Copper Hyperaccumulation in Plants by Expressing a Prokaryotic copC Gene</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2012-11-06</date><risdate>2012</risdate><volume>46</volume><issue>21</issue><spage>12088</spage><epage>12097</epage><pages>12088-12097</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>In this work, engineering Cu-hyperaccumulation in plants was approached. First, the copC gene from Pseudomonas sp. Az13, encoding a periplasmic Cu-binding protein, was expressed in Arabidopsis thaliana driven by the CaMV35S promoter (transgenic lines 35S-copC). 35S-copC lines showed up to 5-fold increased Cu accumulation in roots (up to 2000 μg Cu. g–1) and shoots (up to 400 μg Cu. g–1), compared to untransformed plants, over the limits established for Cu-hyperaccumulators. 35S lines showed enhanced Cu sensitivity. Second, copC was engineered under the control of the cab1 (chlorophyll a/b binding protein 1) promoter, in order to drive copC expression to the shoots (transgenic lines cab1-copC). cab1-copC lines showed increased Cu translocation factors (twice that of wild-type plants) and also displayed enhanced Cu sensitivity. Finally, subcellular targeting the CopC protein to plant vacuoles was addressed by expressing a modified copC gene containing specific vacuole sorting determinants (transgenic lines 35S-copC-V). Unexpectedly, increased Cu-accumulation was not achievedneither in roots nor in shootswhen compared to 35S-copC lines. Conversely, 35S-copC-V lines did display greatly enhanced Cu-hypersensitivity. Our results demonstrate the feasibility of obtaining Cu-hyperaccumulators by engineering a prokaryotic Cu-binding protein, but they highlight the difficulty of altering the exquisite Cu homeostasis in plants.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>23020547</pmid><doi>10.1021/es300842s</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2012-11, Vol.46 (21), p.12088-12097 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_1141536542 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Applied sciences Arabidopsis - genetics Arabidopsis - metabolism Bacterial Proteins - genetics Biodegradation, Environmental Biological and medical sciences Biotechnology Copper - metabolism Decontamination. Miscellaneous Earth sciences Earth, ocean, space Engineering and environment geology. Geothermics Environment and pollution Exact sciences and technology Fundamental and applied biological sciences. Psychology Gene expression Gram-negative bacteria Homeostasis Industrial applications and implications. Economical aspects Miscellaneous Plant Roots - metabolism Plant Shoots - metabolism Plants, Genetically Modified - genetics Plants, Genetically Modified - metabolism Pollution Pollution, environment geology Prokaryotes Proteins Pseudomonas - genetics Soil and sediments pollution Soil Pollutants - metabolism Transgenic plants |
title | Engineering Copper Hyperaccumulation in Plants by Expressing a Prokaryotic copC Gene |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A06%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20Copper%20Hyperaccumulation%20in%20Plants%20by%20Expressing%20a%20Prokaryotic%20copC%20Gene&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Rodri%CC%81guez-Llorente,%20Ignacio%20D&rft.date=2012-11-06&rft.volume=46&rft.issue=21&rft.spage=12088&rft.epage=12097&rft.pages=12088-12097&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es300842s&rft_dat=%3Cproquest_cross%3E1141536542%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a373t-2987ad6ca5d71cb512b08560b67d2043f1787863fc169ad5cfbc12969d6a293d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1142696035&rft_id=info:pmid/23020547&rfr_iscdi=true |