Loading…
Selectivity and Mechanisms Driven by Reaction Dynamics: The Case of the Gas-Phase OH– + CH3ONO2 Reaction
Well-established statistical approaches such as transition-state theory based on high-level calculated potential energy profiles are unable to account for the selectivity observed in the gas-phase OH– + CH3ONO2 reaction. This reaction can undergo bimolecular nucleophilic displacement at either the c...
Saved in:
Published in: | Journal of the American Chemical Society 2012-11, Vol.134 (46), p.19004-19010 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 19010 |
container_issue | 46 |
container_start_page | 19004 |
container_title | Journal of the American Chemical Society |
container_volume | 134 |
creator | de Souza, Miguel A. F Correra, Thiago C Riveros, José M Longo, Ricardo L |
description | Well-established statistical approaches such as transition-state theory based on high-level calculated potential energy profiles are unable to account for the selectivity observed in the gas-phase OH– + CH3ONO2 reaction. This reaction can undergo bimolecular nucleophilic displacement at either the carbon center (SN2@C) or the nitrogen center (SN2@N) as well as a proton abstraction followed by dissociation (ECO2) pathway. Direct dynamics simulations yield an SN2:ECO2 product ratio in close agreement with experiment and show that the lack of reactivity at the nitrogen atom is due to the highly negative electrostatic potential generated by the oxygen atoms in the ONO2 group that scatters the incoming OH–. In addition to these dynamical effects, the nonstatistical behavior of these reactions is attributed to the absence of equilibrated reactant complexes and to the large number of recrossings, which might be present in several ion–molecule gas-phase reactions. |
doi_str_mv | 10.1021/ja3057166 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1186926219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1186926219</sourcerecordid><originalsourceid>FETCH-LOGICAL-a241t-84e1b746fc45808cd0cdf76a8ea4166925e297d4c395f6530fabb6171fc97e893</originalsourceid><addsrcrecordid>eNo9kM1Kw0AUhQdRbK0ufAGZjSBIdO5MZjJxJ6m2QjWidR0mkwlNyE_NJIXsfAff0CcxpdrV_eG7h3MPQudAboBQuM0VI9wDIQ7QGDglDgcqDtGYEEIdTwo2QifW5sPoUgnHaEQZEMFBjFH-bgqj22yTtT1WVYKfjV6pKrOlxdMm25gKxz1-M2pg6gpP-0qVmbZ3eLkyOFDW4DrF7dDPlHVeV9tFOP_5-sbXOJiz8CWk--NTdJSqwpqzvzpBH48Py2DuLMLZU3C_cBR1oXWkayD2XJFql0sidUJ0knpCSaPc4UWfckN9L3E183kqOCOpimMBHqTa94z02QRd7XTXTf3ZGdtGZWa1KQpVmbqzEYAcVASFLXrxh3ZxaZJo3WSlavroP58BuNwBStsor7umGpxHQKJt7tE-d_YLuWFwMg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1186926219</pqid></control><display><type>article</type><title>Selectivity and Mechanisms Driven by Reaction Dynamics: The Case of the Gas-Phase OH– + CH3ONO2 Reaction</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>de Souza, Miguel A. F ; Correra, Thiago C ; Riveros, José M ; Longo, Ricardo L</creator><creatorcontrib>de Souza, Miguel A. F ; Correra, Thiago C ; Riveros, José M ; Longo, Ricardo L</creatorcontrib><description>Well-established statistical approaches such as transition-state theory based on high-level calculated potential energy profiles are unable to account for the selectivity observed in the gas-phase OH– + CH3ONO2 reaction. This reaction can undergo bimolecular nucleophilic displacement at either the carbon center (SN2@C) or the nitrogen center (SN2@N) as well as a proton abstraction followed by dissociation (ECO2) pathway. Direct dynamics simulations yield an SN2:ECO2 product ratio in close agreement with experiment and show that the lack of reactivity at the nitrogen atom is due to the highly negative electrostatic potential generated by the oxygen atoms in the ONO2 group that scatters the incoming OH–. In addition to these dynamical effects, the nonstatistical behavior of these reactions is attributed to the absence of equilibrated reactant complexes and to the large number of recrossings, which might be present in several ion–molecule gas-phase reactions.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja3057166</identifier><identifier>PMID: 23106516</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2012-11, Vol.134 (46), p.19004-19010</ispartof><rights>Copyright © 2012 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23106516$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de Souza, Miguel A. F</creatorcontrib><creatorcontrib>Correra, Thiago C</creatorcontrib><creatorcontrib>Riveros, José M</creatorcontrib><creatorcontrib>Longo, Ricardo L</creatorcontrib><title>Selectivity and Mechanisms Driven by Reaction Dynamics: The Case of the Gas-Phase OH– + CH3ONO2 Reaction</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Well-established statistical approaches such as transition-state theory based on high-level calculated potential energy profiles are unable to account for the selectivity observed in the gas-phase OH– + CH3ONO2 reaction. This reaction can undergo bimolecular nucleophilic displacement at either the carbon center (SN2@C) or the nitrogen center (SN2@N) as well as a proton abstraction followed by dissociation (ECO2) pathway. Direct dynamics simulations yield an SN2:ECO2 product ratio in close agreement with experiment and show that the lack of reactivity at the nitrogen atom is due to the highly negative electrostatic potential generated by the oxygen atoms in the ONO2 group that scatters the incoming OH–. In addition to these dynamical effects, the nonstatistical behavior of these reactions is attributed to the absence of equilibrated reactant complexes and to the large number of recrossings, which might be present in several ion–molecule gas-phase reactions.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNo9kM1Kw0AUhQdRbK0ufAGZjSBIdO5MZjJxJ6m2QjWidR0mkwlNyE_NJIXsfAff0CcxpdrV_eG7h3MPQudAboBQuM0VI9wDIQ7QGDglDgcqDtGYEEIdTwo2QifW5sPoUgnHaEQZEMFBjFH-bgqj22yTtT1WVYKfjV6pKrOlxdMm25gKxz1-M2pg6gpP-0qVmbZ3eLkyOFDW4DrF7dDPlHVeV9tFOP_5-sbXOJiz8CWk--NTdJSqwpqzvzpBH48Py2DuLMLZU3C_cBR1oXWkayD2XJFql0sidUJ0knpCSaPc4UWfckN9L3E183kqOCOpimMBHqTa94z02QRd7XTXTf3ZGdtGZWa1KQpVmbqzEYAcVASFLXrxh3ZxaZJo3WSlavroP58BuNwBStsor7umGpxHQKJt7tE-d_YLuWFwMg</recordid><startdate>20121121</startdate><enddate>20121121</enddate><creator>de Souza, Miguel A. F</creator><creator>Correra, Thiago C</creator><creator>Riveros, José M</creator><creator>Longo, Ricardo L</creator><general>American Chemical Society</general><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20121121</creationdate><title>Selectivity and Mechanisms Driven by Reaction Dynamics: The Case of the Gas-Phase OH– + CH3ONO2 Reaction</title><author>de Souza, Miguel A. F ; Correra, Thiago C ; Riveros, José M ; Longo, Ricardo L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a241t-84e1b746fc45808cd0cdf76a8ea4166925e297d4c395f6530fabb6171fc97e893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Souza, Miguel A. F</creatorcontrib><creatorcontrib>Correra, Thiago C</creatorcontrib><creatorcontrib>Riveros, José M</creatorcontrib><creatorcontrib>Longo, Ricardo L</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Souza, Miguel A. F</au><au>Correra, Thiago C</au><au>Riveros, José M</au><au>Longo, Ricardo L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selectivity and Mechanisms Driven by Reaction Dynamics: The Case of the Gas-Phase OH– + CH3ONO2 Reaction</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2012-11-21</date><risdate>2012</risdate><volume>134</volume><issue>46</issue><spage>19004</spage><epage>19010</epage><pages>19004-19010</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Well-established statistical approaches such as transition-state theory based on high-level calculated potential energy profiles are unable to account for the selectivity observed in the gas-phase OH– + CH3ONO2 reaction. This reaction can undergo bimolecular nucleophilic displacement at either the carbon center (SN2@C) or the nitrogen center (SN2@N) as well as a proton abstraction followed by dissociation (ECO2) pathway. Direct dynamics simulations yield an SN2:ECO2 product ratio in close agreement with experiment and show that the lack of reactivity at the nitrogen atom is due to the highly negative electrostatic potential generated by the oxygen atoms in the ONO2 group that scatters the incoming OH–. In addition to these dynamical effects, the nonstatistical behavior of these reactions is attributed to the absence of equilibrated reactant complexes and to the large number of recrossings, which might be present in several ion–molecule gas-phase reactions.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>23106516</pmid><doi>10.1021/ja3057166</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2012-11, Vol.134 (46), p.19004-19010 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_proquest_miscellaneous_1186926219 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Selectivity and Mechanisms Driven by Reaction Dynamics: The Case of the Gas-Phase OH– + CH3ONO2 Reaction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A43%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selectivity%20and%20Mechanisms%20Driven%20by%20Reaction%20Dynamics:%20The%20Case%20of%20the%20Gas-Phase%20OH%E2%80%93%20+%20CH3ONO2%20Reaction&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=de%20Souza,%20Miguel%20A.%20F&rft.date=2012-11-21&rft.volume=134&rft.issue=46&rft.spage=19004&rft.epage=19010&rft.pages=19004-19010&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja3057166&rft_dat=%3Cproquest_pubme%3E1186926219%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a241t-84e1b746fc45808cd0cdf76a8ea4166925e297d4c395f6530fabb6171fc97e893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1186926219&rft_id=info:pmid/23106516&rfr_iscdi=true |