Loading…

Selectivity and Mechanisms Driven by Reaction Dynamics: The Case of the Gas-Phase OH– + CH3ONO2 Reaction

Well-established statistical approaches such as transition-state theory based on high-level calculated potential energy profiles are unable to account for the selectivity observed in the gas-phase OH– + CH3ONO2 reaction. This reaction can undergo bimolecular nucleophilic displacement at either the c...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2012-11, Vol.134 (46), p.19004-19010
Main Authors: de Souza, Miguel A. F, Correra, Thiago C, Riveros, José M, Longo, Ricardo L
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 19010
container_issue 46
container_start_page 19004
container_title Journal of the American Chemical Society
container_volume 134
creator de Souza, Miguel A. F
Correra, Thiago C
Riveros, José M
Longo, Ricardo L
description Well-established statistical approaches such as transition-state theory based on high-level calculated potential energy profiles are unable to account for the selectivity observed in the gas-phase OH– + CH3ONO2 reaction. This reaction can undergo bimolecular nucleophilic displacement at either the carbon center (SN2@C) or the nitrogen center (SN2@N) as well as a proton abstraction followed by dissociation (ECO2) pathway. Direct dynamics simulations yield an SN2:ECO2 product ratio in close agreement with experiment and show that the lack of reactivity at the nitrogen atom is due to the highly negative electrostatic potential generated by the oxygen atoms in the ONO2 group that scatters the incoming OH–. In addition to these dynamical effects, the nonstatistical behavior of these reactions is attributed to the absence of equilibrated reactant complexes and to the large number of recrossings, which might be present in several ion–molecule gas-phase reactions.
doi_str_mv 10.1021/ja3057166
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1186926219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1186926219</sourcerecordid><originalsourceid>FETCH-LOGICAL-a241t-84e1b746fc45808cd0cdf76a8ea4166925e297d4c395f6530fabb6171fc97e893</originalsourceid><addsrcrecordid>eNo9kM1Kw0AUhQdRbK0ufAGZjSBIdO5MZjJxJ6m2QjWidR0mkwlNyE_NJIXsfAff0CcxpdrV_eG7h3MPQudAboBQuM0VI9wDIQ7QGDglDgcqDtGYEEIdTwo2QifW5sPoUgnHaEQZEMFBjFH-bgqj22yTtT1WVYKfjV6pKrOlxdMm25gKxz1-M2pg6gpP-0qVmbZ3eLkyOFDW4DrF7dDPlHVeV9tFOP_5-sbXOJiz8CWk--NTdJSqwpqzvzpBH48Py2DuLMLZU3C_cBR1oXWkayD2XJFql0sidUJ0knpCSaPc4UWfckN9L3E183kqOCOpimMBHqTa94z02QRd7XTXTf3ZGdtGZWa1KQpVmbqzEYAcVASFLXrxh3ZxaZJo3WSlavroP58BuNwBStsor7umGpxHQKJt7tE-d_YLuWFwMg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1186926219</pqid></control><display><type>article</type><title>Selectivity and Mechanisms Driven by Reaction Dynamics: The Case of the Gas-Phase OH– + CH3ONO2 Reaction</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>de Souza, Miguel A. F ; Correra, Thiago C ; Riveros, José M ; Longo, Ricardo L</creator><creatorcontrib>de Souza, Miguel A. F ; Correra, Thiago C ; Riveros, José M ; Longo, Ricardo L</creatorcontrib><description>Well-established statistical approaches such as transition-state theory based on high-level calculated potential energy profiles are unable to account for the selectivity observed in the gas-phase OH– + CH3ONO2 reaction. This reaction can undergo bimolecular nucleophilic displacement at either the carbon center (SN2@C) or the nitrogen center (SN2@N) as well as a proton abstraction followed by dissociation (ECO2) pathway. Direct dynamics simulations yield an SN2:ECO2 product ratio in close agreement with experiment and show that the lack of reactivity at the nitrogen atom is due to the highly negative electrostatic potential generated by the oxygen atoms in the ONO2 group that scatters the incoming OH–. In addition to these dynamical effects, the nonstatistical behavior of these reactions is attributed to the absence of equilibrated reactant complexes and to the large number of recrossings, which might be present in several ion–molecule gas-phase reactions.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja3057166</identifier><identifier>PMID: 23106516</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2012-11, Vol.134 (46), p.19004-19010</ispartof><rights>Copyright © 2012 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23106516$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de Souza, Miguel A. F</creatorcontrib><creatorcontrib>Correra, Thiago C</creatorcontrib><creatorcontrib>Riveros, José M</creatorcontrib><creatorcontrib>Longo, Ricardo L</creatorcontrib><title>Selectivity and Mechanisms Driven by Reaction Dynamics: The Case of the Gas-Phase OH– + CH3ONO2 Reaction</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Well-established statistical approaches such as transition-state theory based on high-level calculated potential energy profiles are unable to account for the selectivity observed in the gas-phase OH– + CH3ONO2 reaction. This reaction can undergo bimolecular nucleophilic displacement at either the carbon center (SN2@C) or the nitrogen center (SN2@N) as well as a proton abstraction followed by dissociation (ECO2) pathway. Direct dynamics simulations yield an SN2:ECO2 product ratio in close agreement with experiment and show that the lack of reactivity at the nitrogen atom is due to the highly negative electrostatic potential generated by the oxygen atoms in the ONO2 group that scatters the incoming OH–. In addition to these dynamical effects, the nonstatistical behavior of these reactions is attributed to the absence of equilibrated reactant complexes and to the large number of recrossings, which might be present in several ion–molecule gas-phase reactions.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNo9kM1Kw0AUhQdRbK0ufAGZjSBIdO5MZjJxJ6m2QjWidR0mkwlNyE_NJIXsfAff0CcxpdrV_eG7h3MPQudAboBQuM0VI9wDIQ7QGDglDgcqDtGYEEIdTwo2QifW5sPoUgnHaEQZEMFBjFH-bgqj22yTtT1WVYKfjV6pKrOlxdMm25gKxz1-M2pg6gpP-0qVmbZ3eLkyOFDW4DrF7dDPlHVeV9tFOP_5-sbXOJiz8CWk--NTdJSqwpqzvzpBH48Py2DuLMLZU3C_cBR1oXWkayD2XJFql0sidUJ0knpCSaPc4UWfckN9L3E183kqOCOpimMBHqTa94z02QRd7XTXTf3ZGdtGZWa1KQpVmbqzEYAcVASFLXrxh3ZxaZJo3WSlavroP58BuNwBStsor7umGpxHQKJt7tE-d_YLuWFwMg</recordid><startdate>20121121</startdate><enddate>20121121</enddate><creator>de Souza, Miguel A. F</creator><creator>Correra, Thiago C</creator><creator>Riveros, José M</creator><creator>Longo, Ricardo L</creator><general>American Chemical Society</general><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20121121</creationdate><title>Selectivity and Mechanisms Driven by Reaction Dynamics: The Case of the Gas-Phase OH– + CH3ONO2 Reaction</title><author>de Souza, Miguel A. F ; Correra, Thiago C ; Riveros, José M ; Longo, Ricardo L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a241t-84e1b746fc45808cd0cdf76a8ea4166925e297d4c395f6530fabb6171fc97e893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Souza, Miguel A. F</creatorcontrib><creatorcontrib>Correra, Thiago C</creatorcontrib><creatorcontrib>Riveros, José M</creatorcontrib><creatorcontrib>Longo, Ricardo L</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Souza, Miguel A. F</au><au>Correra, Thiago C</au><au>Riveros, José M</au><au>Longo, Ricardo L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selectivity and Mechanisms Driven by Reaction Dynamics: The Case of the Gas-Phase OH– + CH3ONO2 Reaction</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2012-11-21</date><risdate>2012</risdate><volume>134</volume><issue>46</issue><spage>19004</spage><epage>19010</epage><pages>19004-19010</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Well-established statistical approaches such as transition-state theory based on high-level calculated potential energy profiles are unable to account for the selectivity observed in the gas-phase OH– + CH3ONO2 reaction. This reaction can undergo bimolecular nucleophilic displacement at either the carbon center (SN2@C) or the nitrogen center (SN2@N) as well as a proton abstraction followed by dissociation (ECO2) pathway. Direct dynamics simulations yield an SN2:ECO2 product ratio in close agreement with experiment and show that the lack of reactivity at the nitrogen atom is due to the highly negative electrostatic potential generated by the oxygen atoms in the ONO2 group that scatters the incoming OH–. In addition to these dynamical effects, the nonstatistical behavior of these reactions is attributed to the absence of equilibrated reactant complexes and to the large number of recrossings, which might be present in several ion–molecule gas-phase reactions.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>23106516</pmid><doi>10.1021/ja3057166</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2012-11, Vol.134 (46), p.19004-19010
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_1186926219
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Selectivity and Mechanisms Driven by Reaction Dynamics: The Case of the Gas-Phase OH– + CH3ONO2 Reaction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A43%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selectivity%20and%20Mechanisms%20Driven%20by%20Reaction%20Dynamics:%20The%20Case%20of%20the%20Gas-Phase%20OH%E2%80%93%20+%20CH3ONO2%20Reaction&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=de%20Souza,%20Miguel%20A.%20F&rft.date=2012-11-21&rft.volume=134&rft.issue=46&rft.spage=19004&rft.epage=19010&rft.pages=19004-19010&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja3057166&rft_dat=%3Cproquest_pubme%3E1186926219%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a241t-84e1b746fc45808cd0cdf76a8ea4166925e297d4c395f6530fabb6171fc97e893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1186926219&rft_id=info:pmid/23106516&rfr_iscdi=true