Loading…
Permeability evolution in fractured coal: The roles of fracture geometry and water-content
We report laboratory experiments that investigate the permeability evolution of an anthracite coal as a function of applied stress and pore pressure at room temperature as an analog to other coal types. Experiments are conducted on 2.5 cm diameter, 2.5–5 cm long cylindrical samples at confining stre...
Saved in:
Published in: | International journal of coal geology 2011-07, Vol.87 (1), p.13-25 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report laboratory experiments that investigate the permeability evolution of an anthracite coal as a function of applied stress and pore pressure at room temperature as an analog to other coal types. Experiments are conducted on 2.5
cm diameter, 2.5–5
cm long cylindrical samples at confining stresses of 6 to 12
MPa. Permeability and sorption characteristics are measured by pulse transient methods, together with axial and volumetric strains for both inert (helium (He)) and strongly adsorbing (methane (CH
4) and carbon dioxide (CO
2)) gases. To explore the interaction of swelling and fracture geometry we measure the evolution of mechanical and transport characteristics for three separate geometries — sample A containing multiple small embedded fractures, sample B containing a single longitudinal through-going fracture and sample C containing a single radial through-going fracture. Experiments are conducted at constant total stress and with varied pore pressure — increases in pore pressure represent concomitant (but not necessarily equivalent) decreases in effective stress. For the samples with embedded fractures (A and C) the permeability first decreases with an increase in pressure (due to swelling and fracture constraint) and then increases near-linearly (due to the over-riding influence of effective stresses). Conversely, this turnaround in permeability from decreasing to increasing with increasing pore pressure is absent in the discretely fractured sample (B) — the influence of the constraint of the connecting fracture bridges in limiting fracture deformation is importantly absent as supported by theoretical considerations. Under water saturated conditions, the initial permeabilities to all gases are nearly two orders of magnitude lower than for dry coal and permeabilities increase with increasing pore pressure for all samples and at all gas pressures. We also find that the sorption capacities and swelling strains are significantly reduced for water saturated samples — maybe identifying the lack of swelling as the primary reason for the lack of permeability decrease. Finally, we report the weakening effects of gas sorption on the strength of coal samples by loading the cores to failure. Results surprisingly show that the strength of the intact coal (sample A) is smaller than that of the axially fractured coal (sample B) due to the extended duration of exposure to CH
4 and CO
2. Average post-failure particle size for the weakest intact sample (A) is fo |
---|---|
ISSN: | 0166-5162 1872-7840 |
DOI: | 10.1016/j.coal.2011.04.009 |