Loading…

The effects of spatial autoregressive dependencies on inference in ordinary least squares: a geometric approach

There is a common belief that the presence of residual spatial autocorrelation in ordinary least squares (OLS) regression leads to inflated significance levels in beta coefficients and, in particular, inflated levels relative to the more efficient spatial error model (SEM). However, our simulations...

Full description

Saved in:
Bibliographic Details
Published in:Journal of geographical systems 2012, Vol.14 (1), p.91-124
Main Authors: Smith, Tony E., Lee, Ka Lok
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c449t-656d441810f83eba6745b3ceb489adaf807bf97bef926fb05517d6e800adb9fc3
cites cdi_FETCH-LOGICAL-c449t-656d441810f83eba6745b3ceb489adaf807bf97bef926fb05517d6e800adb9fc3
container_end_page 124
container_issue 1
container_start_page 91
container_title Journal of geographical systems
container_volume 14
creator Smith, Tony E.
Lee, Ka Lok
description There is a common belief that the presence of residual spatial autocorrelation in ordinary least squares (OLS) regression leads to inflated significance levels in beta coefficients and, in particular, inflated levels relative to the more efficient spatial error model (SEM). However, our simulations show that this is not always the case. Hence, the purpose of this paper is to examine this question from a geometric viewpoint. The key idea is to characterize the OLS test statistic in terms of angle cosines and examine the geometric implications of this characterization. Our first result is to show that if the explanatory variables in the regression exhibit no spatial autocorrelation, then the distribution of test statistics for individual beta coefficients in OLS is independent of any spatial autocorrelation in the error term. Hence, inferences about betas exhibit all the optimality properties of the classic uncorrelated error case. However, a second more important series of results show that if spatial autocorrelation is present in both the dependent and explanatory variables, then the conventional wisdom is correct. In particular, even when an explanatory variable is statistically independent of the dependent variable, such joint spatial dependencies tend to produce “spurious correlation” that results in over-rejection of the null hypothesis. The underlying geometric nature of this problem is clarified by illustrative examples. The paper concludes with a brief discussion of some possible remedies for this problem.
doi_str_mv 10.1007/s10109-011-0152-x
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1221860861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A355674761</galeid><sourcerecordid>A355674761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-656d441810f83eba6745b3ceb489adaf807bf97bef926fb05517d6e800adb9fc3</originalsourceid><addsrcrecordid>eNp1UcFq3TAQNKWFpmk-oDdRKPTidGVbltVbCGkSCPSSnMVaXr0o-FmOZJfk77uvDikUihBaSTO7sztF8UnCqQTQ37IECaYEKXmrqnx6UxzJplalMo15-xrX8L74kPMDgNRK6qMi3t6TIO_JLVlEL_KMS8BR4LrERLtEOYdfJAaaaRpocoEYNokweUp8JY5ETEOYMD2LkTAvIj-uyLzvAsWO4p6WFJzAeU4R3f3H4p3HMdPJy3lc3P24uD2_Km9-Xl6fn92UrmnMUraqHZpGdhJ8V1OPrW5UXzvqm87ggL4D3Xuje_Kman0PipsZWuoAcOiNd_Vx8XXLy2UfV8qL3YfsaBxxorhmK6tKdi10rWTo53-gD3FNE6uzRtZSNwDAoNMNtMORLLcfl4SO10D74OJEPvD7Wa0US9V_ssqN4FLMOZG3cwp7npKVYA-W2c0yy5bZg2X2iTlfXpRgdjj6hDzw_EqslNJatQcx1YbL_DXtKP1V_P_kvwGH9Kev</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>913174000</pqid></control><display><type>article</type><title>The effects of spatial autoregressive dependencies on inference in ordinary least squares: a geometric approach</title><source>EconLit s plnými texty</source><source>ABI/INFORM Global</source><source>Springer Nature</source><source>BSC - Ebsco (Business Source Ultimate)</source><creator>Smith, Tony E. ; Lee, Ka Lok</creator><creatorcontrib>Smith, Tony E. ; Lee, Ka Lok</creatorcontrib><description>There is a common belief that the presence of residual spatial autocorrelation in ordinary least squares (OLS) regression leads to inflated significance levels in beta coefficients and, in particular, inflated levels relative to the more efficient spatial error model (SEM). However, our simulations show that this is not always the case. Hence, the purpose of this paper is to examine this question from a geometric viewpoint. The key idea is to characterize the OLS test statistic in terms of angle cosines and examine the geometric implications of this characterization. Our first result is to show that if the explanatory variables in the regression exhibit no spatial autocorrelation, then the distribution of test statistics for individual beta coefficients in OLS is independent of any spatial autocorrelation in the error term. Hence, inferences about betas exhibit all the optimality properties of the classic uncorrelated error case. However, a second more important series of results show that if spatial autocorrelation is present in both the dependent and explanatory variables, then the conventional wisdom is correct. In particular, even when an explanatory variable is statistically independent of the dependent variable, such joint spatial dependencies tend to produce “spurious correlation” that results in over-rejection of the null hypothesis. The underlying geometric nature of this problem is clarified by illustrative examples. The paper concludes with a brief discussion of some possible remedies for this problem.</description><identifier>ISSN: 1435-5930</identifier><identifier>EISSN: 1435-5949</identifier><identifier>DOI: 10.1007/s10109-011-0152-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Areal geology ; Areal geology. Maps ; Autocorrelation ; Beta ; Computer Appl. in Social and Behavioral Sciences ; Dependent variables ; Earth sciences ; Earth, ocean, space ; Econometrics ; Economics ; Economics and Finance ; Errors ; Exact sciences and technology ; Geographic information systems ; Geographical Information Systems/Cartography ; Geologic maps, cartography ; Geometry ; Hypotheses ; Landscape/Regional and Urban Planning ; Least squares method ; Mathematical models ; Original Article ; Population density ; Regional/Spatial Science ; Regression ; Statistics ; Studies ; Urban Economics ; Variables</subject><ispartof>Journal of geographical systems, 2012, Vol.14 (1), p.91-124</ispartof><rights>Springer-Verlag 2011</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2012 Springer</rights><rights>Springer-Verlag 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-656d441810f83eba6745b3ceb489adaf807bf97bef926fb05517d6e800adb9fc3</citedby><cites>FETCH-LOGICAL-c449t-656d441810f83eba6745b3ceb489adaf807bf97bef926fb05517d6e800adb9fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/913174000/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/913174000?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,4024,11688,27923,27924,27925,36060,36061,44363,74767</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25577560$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Smith, Tony E.</creatorcontrib><creatorcontrib>Lee, Ka Lok</creatorcontrib><title>The effects of spatial autoregressive dependencies on inference in ordinary least squares: a geometric approach</title><title>Journal of geographical systems</title><addtitle>J Geogr Syst</addtitle><description>There is a common belief that the presence of residual spatial autocorrelation in ordinary least squares (OLS) regression leads to inflated significance levels in beta coefficients and, in particular, inflated levels relative to the more efficient spatial error model (SEM). However, our simulations show that this is not always the case. Hence, the purpose of this paper is to examine this question from a geometric viewpoint. The key idea is to characterize the OLS test statistic in terms of angle cosines and examine the geometric implications of this characterization. Our first result is to show that if the explanatory variables in the regression exhibit no spatial autocorrelation, then the distribution of test statistics for individual beta coefficients in OLS is independent of any spatial autocorrelation in the error term. Hence, inferences about betas exhibit all the optimality properties of the classic uncorrelated error case. However, a second more important series of results show that if spatial autocorrelation is present in both the dependent and explanatory variables, then the conventional wisdom is correct. In particular, even when an explanatory variable is statistically independent of the dependent variable, such joint spatial dependencies tend to produce “spurious correlation” that results in over-rejection of the null hypothesis. The underlying geometric nature of this problem is clarified by illustrative examples. The paper concludes with a brief discussion of some possible remedies for this problem.</description><subject>Areal geology</subject><subject>Areal geology. Maps</subject><subject>Autocorrelation</subject><subject>Beta</subject><subject>Computer Appl. in Social and Behavioral Sciences</subject><subject>Dependent variables</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Econometrics</subject><subject>Economics</subject><subject>Economics and Finance</subject><subject>Errors</subject><subject>Exact sciences and technology</subject><subject>Geographic information systems</subject><subject>Geographical Information Systems/Cartography</subject><subject>Geologic maps, cartography</subject><subject>Geometry</subject><subject>Hypotheses</subject><subject>Landscape/Regional and Urban Planning</subject><subject>Least squares method</subject><subject>Mathematical models</subject><subject>Original Article</subject><subject>Population density</subject><subject>Regional/Spatial Science</subject><subject>Regression</subject><subject>Statistics</subject><subject>Studies</subject><subject>Urban Economics</subject><subject>Variables</subject><issn>1435-5930</issn><issn>1435-5949</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1UcFq3TAQNKWFpmk-oDdRKPTidGVbltVbCGkSCPSSnMVaXr0o-FmOZJfk77uvDikUihBaSTO7sztF8UnCqQTQ37IECaYEKXmrqnx6UxzJplalMo15-xrX8L74kPMDgNRK6qMi3t6TIO_JLVlEL_KMS8BR4LrERLtEOYdfJAaaaRpocoEYNokweUp8JY5ETEOYMD2LkTAvIj-uyLzvAsWO4p6WFJzAeU4R3f3H4p3HMdPJy3lc3P24uD2_Km9-Xl6fn92UrmnMUraqHZpGdhJ8V1OPrW5UXzvqm87ggL4D3Xuje_Kman0PipsZWuoAcOiNd_Vx8XXLy2UfV8qL3YfsaBxxorhmK6tKdi10rWTo53-gD3FNE6uzRtZSNwDAoNMNtMORLLcfl4SO10D74OJEPvD7Wa0US9V_ssqN4FLMOZG3cwp7npKVYA-W2c0yy5bZg2X2iTlfXpRgdjj6hDzw_EqslNJatQcx1YbL_DXtKP1V_P_kvwGH9Kev</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Smith, Tony E.</creator><creator>Lee, Ka Lok</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>KR7</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>2012</creationdate><title>The effects of spatial autoregressive dependencies on inference in ordinary least squares: a geometric approach</title><author>Smith, Tony E. ; Lee, Ka Lok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-656d441810f83eba6745b3ceb489adaf807bf97bef926fb05517d6e800adb9fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Areal geology</topic><topic>Areal geology. Maps</topic><topic>Autocorrelation</topic><topic>Beta</topic><topic>Computer Appl. in Social and Behavioral Sciences</topic><topic>Dependent variables</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Econometrics</topic><topic>Economics</topic><topic>Economics and Finance</topic><topic>Errors</topic><topic>Exact sciences and technology</topic><topic>Geographic information systems</topic><topic>Geographical Information Systems/Cartography</topic><topic>Geologic maps, cartography</topic><topic>Geometry</topic><topic>Hypotheses</topic><topic>Landscape/Regional and Urban Planning</topic><topic>Least squares method</topic><topic>Mathematical models</topic><topic>Original Article</topic><topic>Population density</topic><topic>Regional/Spatial Science</topic><topic>Regression</topic><topic>Statistics</topic><topic>Studies</topic><topic>Urban Economics</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smith, Tony E.</creatorcontrib><creatorcontrib>Lee, Ka Lok</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>ProQuest_Research Library</collection><collection>ProQuest Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of geographical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smith, Tony E.</au><au>Lee, Ka Lok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effects of spatial autoregressive dependencies on inference in ordinary least squares: a geometric approach</atitle><jtitle>Journal of geographical systems</jtitle><stitle>J Geogr Syst</stitle><date>2012</date><risdate>2012</risdate><volume>14</volume><issue>1</issue><spage>91</spage><epage>124</epage><pages>91-124</pages><issn>1435-5930</issn><eissn>1435-5949</eissn><abstract>There is a common belief that the presence of residual spatial autocorrelation in ordinary least squares (OLS) regression leads to inflated significance levels in beta coefficients and, in particular, inflated levels relative to the more efficient spatial error model (SEM). However, our simulations show that this is not always the case. Hence, the purpose of this paper is to examine this question from a geometric viewpoint. The key idea is to characterize the OLS test statistic in terms of angle cosines and examine the geometric implications of this characterization. Our first result is to show that if the explanatory variables in the regression exhibit no spatial autocorrelation, then the distribution of test statistics for individual beta coefficients in OLS is independent of any spatial autocorrelation in the error term. Hence, inferences about betas exhibit all the optimality properties of the classic uncorrelated error case. However, a second more important series of results show that if spatial autocorrelation is present in both the dependent and explanatory variables, then the conventional wisdom is correct. In particular, even when an explanatory variable is statistically independent of the dependent variable, such joint spatial dependencies tend to produce “spurious correlation” that results in over-rejection of the null hypothesis. The underlying geometric nature of this problem is clarified by illustrative examples. The paper concludes with a brief discussion of some possible remedies for this problem.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s10109-011-0152-x</doi><tpages>34</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1435-5930
ispartof Journal of geographical systems, 2012, Vol.14 (1), p.91-124
issn 1435-5930
1435-5949
language eng
recordid cdi_proquest_miscellaneous_1221860861
source EconLit s plnými texty; ABI/INFORM Global; Springer Nature; BSC - Ebsco (Business Source Ultimate)
subjects Areal geology
Areal geology. Maps
Autocorrelation
Beta
Computer Appl. in Social and Behavioral Sciences
Dependent variables
Earth sciences
Earth, ocean, space
Econometrics
Economics
Economics and Finance
Errors
Exact sciences and technology
Geographic information systems
Geographical Information Systems/Cartography
Geologic maps, cartography
Geometry
Hypotheses
Landscape/Regional and Urban Planning
Least squares method
Mathematical models
Original Article
Population density
Regional/Spatial Science
Regression
Statistics
Studies
Urban Economics
Variables
title The effects of spatial autoregressive dependencies on inference in ordinary least squares: a geometric approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A58%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effects%20of%20spatial%20autoregressive%20dependencies%20on%20inference%20in%20ordinary%20least%20squares:%20a%20geometric%20approach&rft.jtitle=Journal%20of%20geographical%20systems&rft.au=Smith,%20Tony%20E.&rft.date=2012&rft.volume=14&rft.issue=1&rft.spage=91&rft.epage=124&rft.pages=91-124&rft.issn=1435-5930&rft.eissn=1435-5949&rft_id=info:doi/10.1007/s10109-011-0152-x&rft_dat=%3Cgale_proqu%3EA355674761%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c449t-656d441810f83eba6745b3ceb489adaf807bf97bef926fb05517d6e800adb9fc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=913174000&rft_id=info:pmid/&rft_galeid=A355674761&rfr_iscdi=true