Loading…
The effects of spatial autoregressive dependencies on inference in ordinary least squares: a geometric approach
There is a common belief that the presence of residual spatial autocorrelation in ordinary least squares (OLS) regression leads to inflated significance levels in beta coefficients and, in particular, inflated levels relative to the more efficient spatial error model (SEM). However, our simulations...
Saved in:
Published in: | Journal of geographical systems 2012, Vol.14 (1), p.91-124 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c449t-656d441810f83eba6745b3ceb489adaf807bf97bef926fb05517d6e800adb9fc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c449t-656d441810f83eba6745b3ceb489adaf807bf97bef926fb05517d6e800adb9fc3 |
container_end_page | 124 |
container_issue | 1 |
container_start_page | 91 |
container_title | Journal of geographical systems |
container_volume | 14 |
creator | Smith, Tony E. Lee, Ka Lok |
description | There is a common belief that the presence of residual spatial autocorrelation in ordinary least squares (OLS) regression leads to inflated significance levels in beta coefficients and, in particular, inflated levels relative to the more efficient spatial error model (SEM). However, our simulations show that this is not always the case. Hence, the purpose of this paper is to examine this question from a geometric viewpoint. The key idea is to characterize the OLS test statistic in terms of angle cosines and examine the geometric implications of this characterization. Our first result is to show that if the explanatory variables in the regression exhibit no spatial autocorrelation, then the distribution of test statistics for individual beta coefficients in OLS is
independent
of any spatial autocorrelation in the error term. Hence, inferences about betas exhibit all the optimality properties of the classic uncorrelated error case. However, a second more important series of results show that if spatial autocorrelation is present in both the dependent and explanatory variables, then the conventional wisdom is correct. In particular, even when an explanatory variable is statistically independent of the dependent variable, such joint spatial dependencies tend to produce “spurious correlation” that results in over-rejection of the null hypothesis. The underlying geometric nature of this problem is clarified by illustrative examples. The paper concludes with a brief discussion of some possible remedies for this problem. |
doi_str_mv | 10.1007/s10109-011-0152-x |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1221860861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A355674761</galeid><sourcerecordid>A355674761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-656d441810f83eba6745b3ceb489adaf807bf97bef926fb05517d6e800adb9fc3</originalsourceid><addsrcrecordid>eNp1UcFq3TAQNKWFpmk-oDdRKPTidGVbltVbCGkSCPSSnMVaXr0o-FmOZJfk77uvDikUihBaSTO7sztF8UnCqQTQ37IECaYEKXmrqnx6UxzJplalMo15-xrX8L74kPMDgNRK6qMi3t6TIO_JLVlEL_KMS8BR4LrERLtEOYdfJAaaaRpocoEYNokweUp8JY5ETEOYMD2LkTAvIj-uyLzvAsWO4p6WFJzAeU4R3f3H4p3HMdPJy3lc3P24uD2_Km9-Xl6fn92UrmnMUraqHZpGdhJ8V1OPrW5UXzvqm87ggL4D3Xuje_Kman0PipsZWuoAcOiNd_Vx8XXLy2UfV8qL3YfsaBxxorhmK6tKdi10rWTo53-gD3FNE6uzRtZSNwDAoNMNtMORLLcfl4SO10D74OJEPvD7Wa0US9V_ssqN4FLMOZG3cwp7npKVYA-W2c0yy5bZg2X2iTlfXpRgdjj6hDzw_EqslNJatQcx1YbL_DXtKP1V_P_kvwGH9Kev</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>913174000</pqid></control><display><type>article</type><title>The effects of spatial autoregressive dependencies on inference in ordinary least squares: a geometric approach</title><source>EconLit s plnými texty</source><source>ABI/INFORM Global</source><source>Springer Nature</source><source>BSC - Ebsco (Business Source Ultimate)</source><creator>Smith, Tony E. ; Lee, Ka Lok</creator><creatorcontrib>Smith, Tony E. ; Lee, Ka Lok</creatorcontrib><description>There is a common belief that the presence of residual spatial autocorrelation in ordinary least squares (OLS) regression leads to inflated significance levels in beta coefficients and, in particular, inflated levels relative to the more efficient spatial error model (SEM). However, our simulations show that this is not always the case. Hence, the purpose of this paper is to examine this question from a geometric viewpoint. The key idea is to characterize the OLS test statistic in terms of angle cosines and examine the geometric implications of this characterization. Our first result is to show that if the explanatory variables in the regression exhibit no spatial autocorrelation, then the distribution of test statistics for individual beta coefficients in OLS is
independent
of any spatial autocorrelation in the error term. Hence, inferences about betas exhibit all the optimality properties of the classic uncorrelated error case. However, a second more important series of results show that if spatial autocorrelation is present in both the dependent and explanatory variables, then the conventional wisdom is correct. In particular, even when an explanatory variable is statistically independent of the dependent variable, such joint spatial dependencies tend to produce “spurious correlation” that results in over-rejection of the null hypothesis. The underlying geometric nature of this problem is clarified by illustrative examples. The paper concludes with a brief discussion of some possible remedies for this problem.</description><identifier>ISSN: 1435-5930</identifier><identifier>EISSN: 1435-5949</identifier><identifier>DOI: 10.1007/s10109-011-0152-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Areal geology ; Areal geology. Maps ; Autocorrelation ; Beta ; Computer Appl. in Social and Behavioral Sciences ; Dependent variables ; Earth sciences ; Earth, ocean, space ; Econometrics ; Economics ; Economics and Finance ; Errors ; Exact sciences and technology ; Geographic information systems ; Geographical Information Systems/Cartography ; Geologic maps, cartography ; Geometry ; Hypotheses ; Landscape/Regional and Urban Planning ; Least squares method ; Mathematical models ; Original Article ; Population density ; Regional/Spatial Science ; Regression ; Statistics ; Studies ; Urban Economics ; Variables</subject><ispartof>Journal of geographical systems, 2012, Vol.14 (1), p.91-124</ispartof><rights>Springer-Verlag 2011</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2012 Springer</rights><rights>Springer-Verlag 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-656d441810f83eba6745b3ceb489adaf807bf97bef926fb05517d6e800adb9fc3</citedby><cites>FETCH-LOGICAL-c449t-656d441810f83eba6745b3ceb489adaf807bf97bef926fb05517d6e800adb9fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/913174000/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/913174000?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,4024,11688,27923,27924,27925,36060,36061,44363,74767</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25577560$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Smith, Tony E.</creatorcontrib><creatorcontrib>Lee, Ka Lok</creatorcontrib><title>The effects of spatial autoregressive dependencies on inference in ordinary least squares: a geometric approach</title><title>Journal of geographical systems</title><addtitle>J Geogr Syst</addtitle><description>There is a common belief that the presence of residual spatial autocorrelation in ordinary least squares (OLS) regression leads to inflated significance levels in beta coefficients and, in particular, inflated levels relative to the more efficient spatial error model (SEM). However, our simulations show that this is not always the case. Hence, the purpose of this paper is to examine this question from a geometric viewpoint. The key idea is to characterize the OLS test statistic in terms of angle cosines and examine the geometric implications of this characterization. Our first result is to show that if the explanatory variables in the regression exhibit no spatial autocorrelation, then the distribution of test statistics for individual beta coefficients in OLS is
independent
of any spatial autocorrelation in the error term. Hence, inferences about betas exhibit all the optimality properties of the classic uncorrelated error case. However, a second more important series of results show that if spatial autocorrelation is present in both the dependent and explanatory variables, then the conventional wisdom is correct. In particular, even when an explanatory variable is statistically independent of the dependent variable, such joint spatial dependencies tend to produce “spurious correlation” that results in over-rejection of the null hypothesis. The underlying geometric nature of this problem is clarified by illustrative examples. The paper concludes with a brief discussion of some possible remedies for this problem.</description><subject>Areal geology</subject><subject>Areal geology. Maps</subject><subject>Autocorrelation</subject><subject>Beta</subject><subject>Computer Appl. in Social and Behavioral Sciences</subject><subject>Dependent variables</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Econometrics</subject><subject>Economics</subject><subject>Economics and Finance</subject><subject>Errors</subject><subject>Exact sciences and technology</subject><subject>Geographic information systems</subject><subject>Geographical Information Systems/Cartography</subject><subject>Geologic maps, cartography</subject><subject>Geometry</subject><subject>Hypotheses</subject><subject>Landscape/Regional and Urban Planning</subject><subject>Least squares method</subject><subject>Mathematical models</subject><subject>Original Article</subject><subject>Population density</subject><subject>Regional/Spatial Science</subject><subject>Regression</subject><subject>Statistics</subject><subject>Studies</subject><subject>Urban Economics</subject><subject>Variables</subject><issn>1435-5930</issn><issn>1435-5949</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1UcFq3TAQNKWFpmk-oDdRKPTidGVbltVbCGkSCPSSnMVaXr0o-FmOZJfk77uvDikUihBaSTO7sztF8UnCqQTQ37IECaYEKXmrqnx6UxzJplalMo15-xrX8L74kPMDgNRK6qMi3t6TIO_JLVlEL_KMS8BR4LrERLtEOYdfJAaaaRpocoEYNokweUp8JY5ETEOYMD2LkTAvIj-uyLzvAsWO4p6WFJzAeU4R3f3H4p3HMdPJy3lc3P24uD2_Km9-Xl6fn92UrmnMUraqHZpGdhJ8V1OPrW5UXzvqm87ggL4D3Xuje_Kman0PipsZWuoAcOiNd_Vx8XXLy2UfV8qL3YfsaBxxorhmK6tKdi10rWTo53-gD3FNE6uzRtZSNwDAoNMNtMORLLcfl4SO10D74OJEPvD7Wa0US9V_ssqN4FLMOZG3cwp7npKVYA-W2c0yy5bZg2X2iTlfXpRgdjj6hDzw_EqslNJatQcx1YbL_DXtKP1V_P_kvwGH9Kev</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Smith, Tony E.</creator><creator>Lee, Ka Lok</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>KR7</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>2012</creationdate><title>The effects of spatial autoregressive dependencies on inference in ordinary least squares: a geometric approach</title><author>Smith, Tony E. ; Lee, Ka Lok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-656d441810f83eba6745b3ceb489adaf807bf97bef926fb05517d6e800adb9fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Areal geology</topic><topic>Areal geology. Maps</topic><topic>Autocorrelation</topic><topic>Beta</topic><topic>Computer Appl. in Social and Behavioral Sciences</topic><topic>Dependent variables</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Econometrics</topic><topic>Economics</topic><topic>Economics and Finance</topic><topic>Errors</topic><topic>Exact sciences and technology</topic><topic>Geographic information systems</topic><topic>Geographical Information Systems/Cartography</topic><topic>Geologic maps, cartography</topic><topic>Geometry</topic><topic>Hypotheses</topic><topic>Landscape/Regional and Urban Planning</topic><topic>Least squares method</topic><topic>Mathematical models</topic><topic>Original Article</topic><topic>Population density</topic><topic>Regional/Spatial Science</topic><topic>Regression</topic><topic>Statistics</topic><topic>Studies</topic><topic>Urban Economics</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smith, Tony E.</creatorcontrib><creatorcontrib>Lee, Ka Lok</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>ProQuest_Research Library</collection><collection>ProQuest Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of geographical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smith, Tony E.</au><au>Lee, Ka Lok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effects of spatial autoregressive dependencies on inference in ordinary least squares: a geometric approach</atitle><jtitle>Journal of geographical systems</jtitle><stitle>J Geogr Syst</stitle><date>2012</date><risdate>2012</risdate><volume>14</volume><issue>1</issue><spage>91</spage><epage>124</epage><pages>91-124</pages><issn>1435-5930</issn><eissn>1435-5949</eissn><abstract>There is a common belief that the presence of residual spatial autocorrelation in ordinary least squares (OLS) regression leads to inflated significance levels in beta coefficients and, in particular, inflated levels relative to the more efficient spatial error model (SEM). However, our simulations show that this is not always the case. Hence, the purpose of this paper is to examine this question from a geometric viewpoint. The key idea is to characterize the OLS test statistic in terms of angle cosines and examine the geometric implications of this characterization. Our first result is to show that if the explanatory variables in the regression exhibit no spatial autocorrelation, then the distribution of test statistics for individual beta coefficients in OLS is
independent
of any spatial autocorrelation in the error term. Hence, inferences about betas exhibit all the optimality properties of the classic uncorrelated error case. However, a second more important series of results show that if spatial autocorrelation is present in both the dependent and explanatory variables, then the conventional wisdom is correct. In particular, even when an explanatory variable is statistically independent of the dependent variable, such joint spatial dependencies tend to produce “spurious correlation” that results in over-rejection of the null hypothesis. The underlying geometric nature of this problem is clarified by illustrative examples. The paper concludes with a brief discussion of some possible remedies for this problem.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s10109-011-0152-x</doi><tpages>34</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1435-5930 |
ispartof | Journal of geographical systems, 2012, Vol.14 (1), p.91-124 |
issn | 1435-5930 1435-5949 |
language | eng |
recordid | cdi_proquest_miscellaneous_1221860861 |
source | EconLit s plnými texty; ABI/INFORM Global; Springer Nature; BSC - Ebsco (Business Source Ultimate) |
subjects | Areal geology Areal geology. Maps Autocorrelation Beta Computer Appl. in Social and Behavioral Sciences Dependent variables Earth sciences Earth, ocean, space Econometrics Economics Economics and Finance Errors Exact sciences and technology Geographic information systems Geographical Information Systems/Cartography Geologic maps, cartography Geometry Hypotheses Landscape/Regional and Urban Planning Least squares method Mathematical models Original Article Population density Regional/Spatial Science Regression Statistics Studies Urban Economics Variables |
title | The effects of spatial autoregressive dependencies on inference in ordinary least squares: a geometric approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A58%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effects%20of%20spatial%20autoregressive%20dependencies%20on%20inference%20in%20ordinary%20least%20squares:%20a%20geometric%20approach&rft.jtitle=Journal%20of%20geographical%20systems&rft.au=Smith,%20Tony%20E.&rft.date=2012&rft.volume=14&rft.issue=1&rft.spage=91&rft.epage=124&rft.pages=91-124&rft.issn=1435-5930&rft.eissn=1435-5949&rft_id=info:doi/10.1007/s10109-011-0152-x&rft_dat=%3Cgale_proqu%3EA355674761%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c449t-656d441810f83eba6745b3ceb489adaf807bf97bef926fb05517d6e800adb9fc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=913174000&rft_id=info:pmid/&rft_galeid=A355674761&rfr_iscdi=true |