Loading…
A low-noise fully-differential CMOS preamplifier for neural recording applications
A fully-differential bandpass CMOS preamplifier for extracellular neural recording is presented in this paper. The capacitive-coupled and capacitive-feedback topology is adopted. We describe the main noise sources of the proposed preamplifier and discuss the methods for achieving the lowest input-re...
Saved in:
Published in: | Science China. Information sciences 2012-02, Vol.55 (2), p.441-452 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A fully-differential bandpass CMOS preamplifier for extracellular neural recording is presented in this paper. The capacitive-coupled and capacitive-feedback topology is adopted. We describe the main noise sources of the proposed preamplifier and discuss the methods for achieving the lowest input-referred noise. The preamplifier has a midband gain of 43 dB and a DC gain of 0. The −3 dB upper cut-off frequency of the preamplifier is 6.8 kHz. The lower cut-off frequency can be adjusted for amplifying the field or action potentials located in different bands. It has an input-referred noise of 3.36 μVrms integrated from 1 Hz to 6.8 kHz for recording the local field potentials (LFPs) and the mixed neural spikes with a power dissipation of 24.75 μW from 3.3 V supply. When the passband is configured as 100 Hz-6.8 kHz for only recording spikes, the noise is measured to be 3.01 μVrms. The 0.115 mm
2
prototype chip is designed and fabricated in 0.35-μm
N
-well CMOS (complementary metal oxide semiconductor) 2P4M process. |
---|---|
ISSN: | 1674-733X 1869-1919 |
DOI: | 10.1007/s11432-011-4333-5 |