Loading…
Construction of Crystalline 2D Covalent Organic Frameworks with Remarkable Chemical (Acid/Base) Stability via a Combined Reversible and Irreversible Route
Two new chemically stable [acid and base] 2D crystalline covalent organic frameworks (COFs) (TpPa-1 and TpPa-2) were synthesized using combined reversible and irreversible organic reactions. Syntheses of these COFs were done by the Schiff base reactions of 1,3,5-triformylphloroglucinol (Tp) with p-p...
Saved in:
Published in: | Journal of the American Chemical Society 2012-12, Vol.134 (48), p.19524-19527 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Two new chemically stable [acid and base] 2D crystalline covalent organic frameworks (COFs) (TpPa-1 and TpPa-2) were synthesized using combined reversible and irreversible organic reactions. Syntheses of these COFs were done by the Schiff base reactions of 1,3,5-triformylphloroglucinol (Tp) with p-phenylenediamine (Pa-1) and 2,5-dimethyl-p-phenylenediamine (Pa-2), respectively, in 1:1 mesitylene/dioxane. The expected enol–imine (OH) form underwent irreversible proton tautomerism, and only the keto–enamine form was observed. Because of the irreversible nature of the total reaction and the absence of an imine bond in the system, TpPa-1 and TpPa-2 showed strong resistance toward acid (9 N HCl) and boiling water. Moreover, TpPa-2 showed exceptional stability in base (9 N NaOH) as well. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/ja308278w |