Loading…

Cavity-assisted quantum bath engineering

We demonstrate quantum bath engineering for a superconducting artificial atom coupled to a microwave cavity. By tailoring the spectrum of microwave photon shot noise in the cavity, we create a dissipative environment that autonomously relaxes the atom to an arbitrarily specified coherent superpositi...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2012-11, Vol.109 (18), p.183602-183602, Article 183602
Main Authors: Murch, K W, Vool, U, Zhou, D, Weber, S J, Girvin, S M, Siddiqi, I
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c412t-8499ca8d25c91ce4e7f3ccdd4e212ee8b57a4235f2e131210746a725bb06ba7f3
cites cdi_FETCH-LOGICAL-c412t-8499ca8d25c91ce4e7f3ccdd4e212ee8b57a4235f2e131210746a725bb06ba7f3
container_end_page 183602
container_issue 18
container_start_page 183602
container_title Physical review letters
container_volume 109
creator Murch, K W
Vool, U
Zhou, D
Weber, S J
Girvin, S M
Siddiqi, I
description We demonstrate quantum bath engineering for a superconducting artificial atom coupled to a microwave cavity. By tailoring the spectrum of microwave photon shot noise in the cavity, we create a dissipative environment that autonomously relaxes the atom to an arbitrarily specified coherent superposition of the ground and excited states. In the presence of background thermal excitations, this mechanism increases state purity and effectively cools the dressed atom state to a low temperature.
doi_str_mv 10.1103/PhysRevLett.109.183602
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1237510121</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1237510121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-8499ca8d25c91ce4e7f3ccdd4e212ee8b57a4235f2e131210746a725bb06ba7f3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRbK3-hdJjL6kzs5ts9ihFq1BQRM9hs5m0kSZts5tC_72RVvE0MDzvfDxCjBFmiCDv39ZH_86HJYcwQzAzTGUCdCGGCNpEGlFdiiGAxMgA6IG48f4LAJCS9FoMSBLGpNOhmM7toQrHyHpf-cDFZN_ZJnT1JLdhPeFmVTXMbdWsbsVVaTee7851JD6fHj_mz9HydfEyf1hGTiGFKFXGOJsWFDuDjhXrUjpXFIoJiTnNY20VybgkRonUX6sSqynOc0hy28MjMT3N3bXbfcc-ZHXlHW82tuFt5zMkqWPsH8EeTU6oa7fet1xmu7aqbXvMELIfS9k_S33PZCdLfXB83tHlNRd_sV8t8huXuWVn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1237510121</pqid></control><display><type>article</type><title>Cavity-assisted quantum bath engineering</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Murch, K W ; Vool, U ; Zhou, D ; Weber, S J ; Girvin, S M ; Siddiqi, I</creator><creatorcontrib>Murch, K W ; Vool, U ; Zhou, D ; Weber, S J ; Girvin, S M ; Siddiqi, I</creatorcontrib><description>We demonstrate quantum bath engineering for a superconducting artificial atom coupled to a microwave cavity. By tailoring the spectrum of microwave photon shot noise in the cavity, we create a dissipative environment that autonomously relaxes the atom to an arbitrarily specified coherent superposition of the ground and excited states. In the presence of background thermal excitations, this mechanism increases state purity and effectively cools the dressed atom state to a low temperature.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.109.183602</identifier><identifier>PMID: 23215278</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2012-11, Vol.109 (18), p.183602-183602, Article 183602</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-8499ca8d25c91ce4e7f3ccdd4e212ee8b57a4235f2e131210746a725bb06ba7f3</citedby><cites>FETCH-LOGICAL-c412t-8499ca8d25c91ce4e7f3ccdd4e212ee8b57a4235f2e131210746a725bb06ba7f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23215278$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Murch, K W</creatorcontrib><creatorcontrib>Vool, U</creatorcontrib><creatorcontrib>Zhou, D</creatorcontrib><creatorcontrib>Weber, S J</creatorcontrib><creatorcontrib>Girvin, S M</creatorcontrib><creatorcontrib>Siddiqi, I</creatorcontrib><title>Cavity-assisted quantum bath engineering</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We demonstrate quantum bath engineering for a superconducting artificial atom coupled to a microwave cavity. By tailoring the spectrum of microwave photon shot noise in the cavity, we create a dissipative environment that autonomously relaxes the atom to an arbitrarily specified coherent superposition of the ground and excited states. In the presence of background thermal excitations, this mechanism increases state purity and effectively cools the dressed atom state to a low temperature.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpNkE1Lw0AQhhdRbK3-hdJjL6kzs5ts9ihFq1BQRM9hs5m0kSZts5tC_72RVvE0MDzvfDxCjBFmiCDv39ZH_86HJYcwQzAzTGUCdCGGCNpEGlFdiiGAxMgA6IG48f4LAJCS9FoMSBLGpNOhmM7toQrHyHpf-cDFZN_ZJnT1JLdhPeFmVTXMbdWsbsVVaTee7851JD6fHj_mz9HydfEyf1hGTiGFKFXGOJsWFDuDjhXrUjpXFIoJiTnNY20VybgkRonUX6sSqynOc0hy28MjMT3N3bXbfcc-ZHXlHW82tuFt5zMkqWPsH8EeTU6oa7fet1xmu7aqbXvMELIfS9k_S33PZCdLfXB83tHlNRd_sV8t8huXuWVn</recordid><startdate>20121102</startdate><enddate>20121102</enddate><creator>Murch, K W</creator><creator>Vool, U</creator><creator>Zhou, D</creator><creator>Weber, S J</creator><creator>Girvin, S M</creator><creator>Siddiqi, I</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20121102</creationdate><title>Cavity-assisted quantum bath engineering</title><author>Murch, K W ; Vool, U ; Zhou, D ; Weber, S J ; Girvin, S M ; Siddiqi, I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-8499ca8d25c91ce4e7f3ccdd4e212ee8b57a4235f2e131210746a725bb06ba7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murch, K W</creatorcontrib><creatorcontrib>Vool, U</creatorcontrib><creatorcontrib>Zhou, D</creatorcontrib><creatorcontrib>Weber, S J</creatorcontrib><creatorcontrib>Girvin, S M</creatorcontrib><creatorcontrib>Siddiqi, I</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murch, K W</au><au>Vool, U</au><au>Zhou, D</au><au>Weber, S J</au><au>Girvin, S M</au><au>Siddiqi, I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cavity-assisted quantum bath engineering</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2012-11-02</date><risdate>2012</risdate><volume>109</volume><issue>18</issue><spage>183602</spage><epage>183602</epage><pages>183602-183602</pages><artnum>183602</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We demonstrate quantum bath engineering for a superconducting artificial atom coupled to a microwave cavity. By tailoring the spectrum of microwave photon shot noise in the cavity, we create a dissipative environment that autonomously relaxes the atom to an arbitrarily specified coherent superposition of the ground and excited states. In the presence of background thermal excitations, this mechanism increases state purity and effectively cools the dressed atom state to a low temperature.</abstract><cop>United States</cop><pmid>23215278</pmid><doi>10.1103/PhysRevLett.109.183602</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2012-11, Vol.109 (18), p.183602-183602, Article 183602
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_1237510121
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
title Cavity-assisted quantum bath engineering
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T07%3A25%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cavity-assisted%20quantum%20bath%20engineering&rft.jtitle=Physical%20review%20letters&rft.au=Murch,%20K%20W&rft.date=2012-11-02&rft.volume=109&rft.issue=18&rft.spage=183602&rft.epage=183602&rft.pages=183602-183602&rft.artnum=183602&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.109.183602&rft_dat=%3Cproquest_cross%3E1237510121%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c412t-8499ca8d25c91ce4e7f3ccdd4e212ee8b57a4235f2e131210746a725bb06ba7f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1237510121&rft_id=info:pmid/23215278&rfr_iscdi=true