Loading…
Cavity-assisted quantum bath engineering
We demonstrate quantum bath engineering for a superconducting artificial atom coupled to a microwave cavity. By tailoring the spectrum of microwave photon shot noise in the cavity, we create a dissipative environment that autonomously relaxes the atom to an arbitrarily specified coherent superpositi...
Saved in:
Published in: | Physical review letters 2012-11, Vol.109 (18), p.183602-183602, Article 183602 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c412t-8499ca8d25c91ce4e7f3ccdd4e212ee8b57a4235f2e131210746a725bb06ba7f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c412t-8499ca8d25c91ce4e7f3ccdd4e212ee8b57a4235f2e131210746a725bb06ba7f3 |
container_end_page | 183602 |
container_issue | 18 |
container_start_page | 183602 |
container_title | Physical review letters |
container_volume | 109 |
creator | Murch, K W Vool, U Zhou, D Weber, S J Girvin, S M Siddiqi, I |
description | We demonstrate quantum bath engineering for a superconducting artificial atom coupled to a microwave cavity. By tailoring the spectrum of microwave photon shot noise in the cavity, we create a dissipative environment that autonomously relaxes the atom to an arbitrarily specified coherent superposition of the ground and excited states. In the presence of background thermal excitations, this mechanism increases state purity and effectively cools the dressed atom state to a low temperature. |
doi_str_mv | 10.1103/PhysRevLett.109.183602 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1237510121</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1237510121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-8499ca8d25c91ce4e7f3ccdd4e212ee8b57a4235f2e131210746a725bb06ba7f3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRbK3-hdJjL6kzs5ts9ihFq1BQRM9hs5m0kSZts5tC_72RVvE0MDzvfDxCjBFmiCDv39ZH_86HJYcwQzAzTGUCdCGGCNpEGlFdiiGAxMgA6IG48f4LAJCS9FoMSBLGpNOhmM7toQrHyHpf-cDFZN_ZJnT1JLdhPeFmVTXMbdWsbsVVaTee7851JD6fHj_mz9HydfEyf1hGTiGFKFXGOJsWFDuDjhXrUjpXFIoJiTnNY20VybgkRonUX6sSqynOc0hy28MjMT3N3bXbfcc-ZHXlHW82tuFt5zMkqWPsH8EeTU6oa7fet1xmu7aqbXvMELIfS9k_S33PZCdLfXB83tHlNRd_sV8t8huXuWVn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1237510121</pqid></control><display><type>article</type><title>Cavity-assisted quantum bath engineering</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Murch, K W ; Vool, U ; Zhou, D ; Weber, S J ; Girvin, S M ; Siddiqi, I</creator><creatorcontrib>Murch, K W ; Vool, U ; Zhou, D ; Weber, S J ; Girvin, S M ; Siddiqi, I</creatorcontrib><description>We demonstrate quantum bath engineering for a superconducting artificial atom coupled to a microwave cavity. By tailoring the spectrum of microwave photon shot noise in the cavity, we create a dissipative environment that autonomously relaxes the atom to an arbitrarily specified coherent superposition of the ground and excited states. In the presence of background thermal excitations, this mechanism increases state purity and effectively cools the dressed atom state to a low temperature.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.109.183602</identifier><identifier>PMID: 23215278</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2012-11, Vol.109 (18), p.183602-183602, Article 183602</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-8499ca8d25c91ce4e7f3ccdd4e212ee8b57a4235f2e131210746a725bb06ba7f3</citedby><cites>FETCH-LOGICAL-c412t-8499ca8d25c91ce4e7f3ccdd4e212ee8b57a4235f2e131210746a725bb06ba7f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23215278$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Murch, K W</creatorcontrib><creatorcontrib>Vool, U</creatorcontrib><creatorcontrib>Zhou, D</creatorcontrib><creatorcontrib>Weber, S J</creatorcontrib><creatorcontrib>Girvin, S M</creatorcontrib><creatorcontrib>Siddiqi, I</creatorcontrib><title>Cavity-assisted quantum bath engineering</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We demonstrate quantum bath engineering for a superconducting artificial atom coupled to a microwave cavity. By tailoring the spectrum of microwave photon shot noise in the cavity, we create a dissipative environment that autonomously relaxes the atom to an arbitrarily specified coherent superposition of the ground and excited states. In the presence of background thermal excitations, this mechanism increases state purity and effectively cools the dressed atom state to a low temperature.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpNkE1Lw0AQhhdRbK3-hdJjL6kzs5ts9ihFq1BQRM9hs5m0kSZts5tC_72RVvE0MDzvfDxCjBFmiCDv39ZH_86HJYcwQzAzTGUCdCGGCNpEGlFdiiGAxMgA6IG48f4LAJCS9FoMSBLGpNOhmM7toQrHyHpf-cDFZN_ZJnT1JLdhPeFmVTXMbdWsbsVVaTee7851JD6fHj_mz9HydfEyf1hGTiGFKFXGOJsWFDuDjhXrUjpXFIoJiTnNY20VybgkRonUX6sSqynOc0hy28MjMT3N3bXbfcc-ZHXlHW82tuFt5zMkqWPsH8EeTU6oa7fet1xmu7aqbXvMELIfS9k_S33PZCdLfXB83tHlNRd_sV8t8huXuWVn</recordid><startdate>20121102</startdate><enddate>20121102</enddate><creator>Murch, K W</creator><creator>Vool, U</creator><creator>Zhou, D</creator><creator>Weber, S J</creator><creator>Girvin, S M</creator><creator>Siddiqi, I</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20121102</creationdate><title>Cavity-assisted quantum bath engineering</title><author>Murch, K W ; Vool, U ; Zhou, D ; Weber, S J ; Girvin, S M ; Siddiqi, I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-8499ca8d25c91ce4e7f3ccdd4e212ee8b57a4235f2e131210746a725bb06ba7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murch, K W</creatorcontrib><creatorcontrib>Vool, U</creatorcontrib><creatorcontrib>Zhou, D</creatorcontrib><creatorcontrib>Weber, S J</creatorcontrib><creatorcontrib>Girvin, S M</creatorcontrib><creatorcontrib>Siddiqi, I</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murch, K W</au><au>Vool, U</au><au>Zhou, D</au><au>Weber, S J</au><au>Girvin, S M</au><au>Siddiqi, I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cavity-assisted quantum bath engineering</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2012-11-02</date><risdate>2012</risdate><volume>109</volume><issue>18</issue><spage>183602</spage><epage>183602</epage><pages>183602-183602</pages><artnum>183602</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We demonstrate quantum bath engineering for a superconducting artificial atom coupled to a microwave cavity. By tailoring the spectrum of microwave photon shot noise in the cavity, we create a dissipative environment that autonomously relaxes the atom to an arbitrarily specified coherent superposition of the ground and excited states. In the presence of background thermal excitations, this mechanism increases state purity and effectively cools the dressed atom state to a low temperature.</abstract><cop>United States</cop><pmid>23215278</pmid><doi>10.1103/PhysRevLett.109.183602</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2012-11, Vol.109 (18), p.183602-183602, Article 183602 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_1237510121 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
title | Cavity-assisted quantum bath engineering |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T07%3A25%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cavity-assisted%20quantum%20bath%20engineering&rft.jtitle=Physical%20review%20letters&rft.au=Murch,%20K%20W&rft.date=2012-11-02&rft.volume=109&rft.issue=18&rft.spage=183602&rft.epage=183602&rft.pages=183602-183602&rft.artnum=183602&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.109.183602&rft_dat=%3Cproquest_cross%3E1237510121%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c412t-8499ca8d25c91ce4e7f3ccdd4e212ee8b57a4235f2e131210746a725bb06ba7f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1237510121&rft_id=info:pmid/23215278&rfr_iscdi=true |