Loading…

A computational model for causal learning in cognitive agents

To mimic human tutors and provide optimal training, a cognitive tutoring agent should be able to continuously learn from its interactions with learners. An important element that helps a tutor better understand learner’s mistake is finding the causes of the learners’ mistakes. In this paper, we expl...

Full description

Saved in:
Bibliographic Details
Published in:Knowledge-based systems 2012-06, Vol.30, p.48-56
Main Authors: Faghihi, Usef, Fournier-viger, Philippe, Nkambou, Roger
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To mimic human tutors and provide optimal training, a cognitive tutoring agent should be able to continuously learn from its interactions with learners. An important element that helps a tutor better understand learner’s mistake is finding the causes of the learners’ mistakes. In this paper, we explain how we have designed and integrated a causal learning mechanism in a cognitive agent named CELTS (Conscious Emotional Learning Tutoring System) that assists learners during learning activities. Unlike other works in cognitive agents that used Bayesian Networks to deal with causality, CELTS’s causal learning mechanism is implemented using data mining algorithms that can be used with large amount of data. The integration of a causal learning mechanism within CELTS allows it to predict learners’ mistakes. Experiments showed that the causal learning mechanism help CELTS improve learners’ performance.
ISSN:0950-7051
1872-7409
DOI:10.1016/j.knosys.2011.09.005