Loading…

Fragmentation patterns of protonated amino acids formed by atmospheric pressure chemical ionization

RATIONALE Dissociation reactions of protonated amino acids (AAs) can be used as models for the fragmentation of protonated peptides. Atmospheric pressure chemical ionization mass spectrometry (APCI‐MS) provides a great deal of structural information in a short analysis time. METHODS In APCI‐MS, the...

Full description

Saved in:
Bibliographic Details
Published in:Rapid communications in mass spectrometry 2013-01, Vol.27 (1), p.143-151
Main Authors: Choi, Sung-Seen, Song, Min Ju, Kim, Ok-Bae, Kim, Yeowool
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3871-b11447aac8415c426496598ffea8895214120256e675f603856d1bb869a94dba3
cites cdi_FETCH-LOGICAL-c3871-b11447aac8415c426496598ffea8895214120256e675f603856d1bb869a94dba3
container_end_page 151
container_issue 1
container_start_page 143
container_title Rapid communications in mass spectrometry
container_volume 27
creator Choi, Sung-Seen
Song, Min Ju
Kim, Ok-Bae
Kim, Yeowool
description RATIONALE Dissociation reactions of protonated amino acids (AAs) can be used as models for the fragmentation of protonated peptides. Atmospheric pressure chemical ionization mass spectrometry (APCI‐MS) provides a great deal of structural information in a short analysis time. METHODS In APCI‐MS, the fragmentation patterns can be obtained by varying the cone voltage and some fragment ions are produced that can be used to identify the structure of an analyte. In general, the fragmentation of AAs has used liquid chromatography/tandem mass spectrometry (LC/MS/MS). However, we studied the fragmentation of protonated AAs using a single quadrupole mass spectrometer. RESULTS The principal fragment ions were [M + H – H2O – CO]+, [M + H – H2O]+, and [M + H – NH3]+. AAs that only generated [M + H – H2O – CO]+ were alanine, glycine, histidine, isoleucine, leucine, proline, phenylalanine, and valine. AAs that generated [M + H – H2O]+ and [M + H – H2O – CO]+ were aspartic acid, glutamic acid, serine, and threonine, while AAs that generated [M + H – NH3]+ and [M + H – H2O – CO]+ were asparagine, cysteine, glutamine, methionine, tryptophan, and tyrosine. Arginine and lysine generated [M + H – H2O]+ and [M + H – NH3]+. CONCLUSIONS The relative abundances of the fragment ions increased with increase in the cone voltage. The experimental results were explained by the favorability of the intermediate structure and the stability of the fragment ion structure. The specific fragmentation patterns could be used for differentiating underivatized AAs. Copyright © 2012 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/rcm.6411
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1239059740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1239059740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3871-b11447aac8415c426496598ffea8895214120256e675f603856d1bb869a94dba3</originalsourceid><addsrcrecordid>eNp1kF1rFDEUQIModq2Cv0AGfPFl2tx851EWtyvUClWpbyGTzdjUmcmaZND115u12wpCny5cDod7D0IvAZ8AxuQ0ufFEMIBHaAFYyxYTCo_RAmsOLQOtjtCznG8wBuAEP0VHhBKqKZEL5FbJfhv9VGwJcWq2thSfptzEvtmmWOJki980dgxTbKwLm9z0MY111e0aW8aYt9c-BVdhn_OcfOOu_RicHZqqC7__Wp-jJ70dsn9xmMfoy-rd5-W6Pf949n759rx1VEloOwDGpLVOMeCOEcG04Fr1vbdKaU6AAcGECy8k7wWmiosNdJ0S2mq26Sw9Rm9uvfXyH7PPxYwhOz8MdvJxzgbq05hryXBFX_-H3sQ5TfW6PSWVplLjf0KXYs7J92abwmjTzgA2-_Cmhjf78BV9dRDOXc1zD96VrkB7C_wMg989KDKXyw8H4YEPufhf97xN342QVHJzdXFm1l_FxYquP5kr-gfWBJsh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1237893790</pqid></control><display><type>article</type><title>Fragmentation patterns of protonated amino acids formed by atmospheric pressure chemical ionization</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Choi, Sung-Seen ; Song, Min Ju ; Kim, Ok-Bae ; Kim, Yeowool</creator><creatorcontrib>Choi, Sung-Seen ; Song, Min Ju ; Kim, Ok-Bae ; Kim, Yeowool</creatorcontrib><description>RATIONALE Dissociation reactions of protonated amino acids (AAs) can be used as models for the fragmentation of protonated peptides. Atmospheric pressure chemical ionization mass spectrometry (APCI‐MS) provides a great deal of structural information in a short analysis time. METHODS In APCI‐MS, the fragmentation patterns can be obtained by varying the cone voltage and some fragment ions are produced that can be used to identify the structure of an analyte. In general, the fragmentation of AAs has used liquid chromatography/tandem mass spectrometry (LC/MS/MS). However, we studied the fragmentation of protonated AAs using a single quadrupole mass spectrometer. RESULTS The principal fragment ions were [M + H – H2O – CO]+, [M + H – H2O]+, and [M + H – NH3]+. AAs that only generated [M + H – H2O – CO]+ were alanine, glycine, histidine, isoleucine, leucine, proline, phenylalanine, and valine. AAs that generated [M + H – H2O]+ and [M + H – H2O – CO]+ were aspartic acid, glutamic acid, serine, and threonine, while AAs that generated [M + H – NH3]+ and [M + H – H2O – CO]+ were asparagine, cysteine, glutamine, methionine, tryptophan, and tyrosine. Arginine and lysine generated [M + H – H2O]+ and [M + H – NH3]+. CONCLUSIONS The relative abundances of the fragment ions increased with increase in the cone voltage. The experimental results were explained by the favorability of the intermediate structure and the stability of the fragment ion structure. The specific fragmentation patterns could be used for differentiating underivatized AAs. Copyright © 2012 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0951-4198</identifier><identifier>EISSN: 1097-0231</identifier><identifier>DOI: 10.1002/rcm.6411</identifier><identifier>PMID: 23239327</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Amino Acids - chemistry ; Atmospheric Pressure ; Ions - chemistry ; Mass Spectrometry - methods ; Protons</subject><ispartof>Rapid communications in mass spectrometry, 2013-01, Vol.27 (1), p.143-151</ispartof><rights>Copyright © 2012 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3871-b11447aac8415c426496598ffea8895214120256e675f603856d1bb869a94dba3</citedby><cites>FETCH-LOGICAL-c3871-b11447aac8415c426496598ffea8895214120256e675f603856d1bb869a94dba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23239327$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Choi, Sung-Seen</creatorcontrib><creatorcontrib>Song, Min Ju</creatorcontrib><creatorcontrib>Kim, Ok-Bae</creatorcontrib><creatorcontrib>Kim, Yeowool</creatorcontrib><title>Fragmentation patterns of protonated amino acids formed by atmospheric pressure chemical ionization</title><title>Rapid communications in mass spectrometry</title><addtitle>Rapid Commun. Mass Spectrom</addtitle><description>RATIONALE Dissociation reactions of protonated amino acids (AAs) can be used as models for the fragmentation of protonated peptides. Atmospheric pressure chemical ionization mass spectrometry (APCI‐MS) provides a great deal of structural information in a short analysis time. METHODS In APCI‐MS, the fragmentation patterns can be obtained by varying the cone voltage and some fragment ions are produced that can be used to identify the structure of an analyte. In general, the fragmentation of AAs has used liquid chromatography/tandem mass spectrometry (LC/MS/MS). However, we studied the fragmentation of protonated AAs using a single quadrupole mass spectrometer. RESULTS The principal fragment ions were [M + H – H2O – CO]+, [M + H – H2O]+, and [M + H – NH3]+. AAs that only generated [M + H – H2O – CO]+ were alanine, glycine, histidine, isoleucine, leucine, proline, phenylalanine, and valine. AAs that generated [M + H – H2O]+ and [M + H – H2O – CO]+ were aspartic acid, glutamic acid, serine, and threonine, while AAs that generated [M + H – NH3]+ and [M + H – H2O – CO]+ were asparagine, cysteine, glutamine, methionine, tryptophan, and tyrosine. Arginine and lysine generated [M + H – H2O]+ and [M + H – NH3]+. CONCLUSIONS The relative abundances of the fragment ions increased with increase in the cone voltage. The experimental results were explained by the favorability of the intermediate structure and the stability of the fragment ion structure. The specific fragmentation patterns could be used for differentiating underivatized AAs. Copyright © 2012 John Wiley &amp; Sons, Ltd.</description><subject>Amino Acids - chemistry</subject><subject>Atmospheric Pressure</subject><subject>Ions - chemistry</subject><subject>Mass Spectrometry - methods</subject><subject>Protons</subject><issn>0951-4198</issn><issn>1097-0231</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kF1rFDEUQIModq2Cv0AGfPFl2tx851EWtyvUClWpbyGTzdjUmcmaZND115u12wpCny5cDod7D0IvAZ8AxuQ0ufFEMIBHaAFYyxYTCo_RAmsOLQOtjtCznG8wBuAEP0VHhBKqKZEL5FbJfhv9VGwJcWq2thSfptzEvtmmWOJki980dgxTbKwLm9z0MY111e0aW8aYt9c-BVdhn_OcfOOu_RicHZqqC7__Wp-jJ70dsn9xmMfoy-rd5-W6Pf949n759rx1VEloOwDGpLVOMeCOEcG04Fr1vbdKaU6AAcGECy8k7wWmiosNdJ0S2mq26Sw9Rm9uvfXyH7PPxYwhOz8MdvJxzgbq05hryXBFX_-H3sQ5TfW6PSWVplLjf0KXYs7J92abwmjTzgA2-_Cmhjf78BV9dRDOXc1zD96VrkB7C_wMg989KDKXyw8H4YEPufhf97xN342QVHJzdXFm1l_FxYquP5kr-gfWBJsh</recordid><startdate>20130115</startdate><enddate>20130115</enddate><creator>Choi, Sung-Seen</creator><creator>Song, Min Ju</creator><creator>Kim, Ok-Bae</creator><creator>Kim, Yeowool</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20130115</creationdate><title>Fragmentation patterns of protonated amino acids formed by atmospheric pressure chemical ionization</title><author>Choi, Sung-Seen ; Song, Min Ju ; Kim, Ok-Bae ; Kim, Yeowool</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3871-b11447aac8415c426496598ffea8895214120256e675f603856d1bb869a94dba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amino Acids - chemistry</topic><topic>Atmospheric Pressure</topic><topic>Ions - chemistry</topic><topic>Mass Spectrometry - methods</topic><topic>Protons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Sung-Seen</creatorcontrib><creatorcontrib>Song, Min Ju</creatorcontrib><creatorcontrib>Kim, Ok-Bae</creatorcontrib><creatorcontrib>Kim, Yeowool</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Rapid communications in mass spectrometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Sung-Seen</au><au>Song, Min Ju</au><au>Kim, Ok-Bae</au><au>Kim, Yeowool</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fragmentation patterns of protonated amino acids formed by atmospheric pressure chemical ionization</atitle><jtitle>Rapid communications in mass spectrometry</jtitle><addtitle>Rapid Commun. Mass Spectrom</addtitle><date>2013-01-15</date><risdate>2013</risdate><volume>27</volume><issue>1</issue><spage>143</spage><epage>151</epage><pages>143-151</pages><issn>0951-4198</issn><eissn>1097-0231</eissn><abstract>RATIONALE Dissociation reactions of protonated amino acids (AAs) can be used as models for the fragmentation of protonated peptides. Atmospheric pressure chemical ionization mass spectrometry (APCI‐MS) provides a great deal of structural information in a short analysis time. METHODS In APCI‐MS, the fragmentation patterns can be obtained by varying the cone voltage and some fragment ions are produced that can be used to identify the structure of an analyte. In general, the fragmentation of AAs has used liquid chromatography/tandem mass spectrometry (LC/MS/MS). However, we studied the fragmentation of protonated AAs using a single quadrupole mass spectrometer. RESULTS The principal fragment ions were [M + H – H2O – CO]+, [M + H – H2O]+, and [M + H – NH3]+. AAs that only generated [M + H – H2O – CO]+ were alanine, glycine, histidine, isoleucine, leucine, proline, phenylalanine, and valine. AAs that generated [M + H – H2O]+ and [M + H – H2O – CO]+ were aspartic acid, glutamic acid, serine, and threonine, while AAs that generated [M + H – NH3]+ and [M + H – H2O – CO]+ were asparagine, cysteine, glutamine, methionine, tryptophan, and tyrosine. Arginine and lysine generated [M + H – H2O]+ and [M + H – NH3]+. CONCLUSIONS The relative abundances of the fragment ions increased with increase in the cone voltage. The experimental results were explained by the favorability of the intermediate structure and the stability of the fragment ion structure. The specific fragmentation patterns could be used for differentiating underivatized AAs. Copyright © 2012 John Wiley &amp; Sons, Ltd.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>23239327</pmid><doi>10.1002/rcm.6411</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0951-4198
ispartof Rapid communications in mass spectrometry, 2013-01, Vol.27 (1), p.143-151
issn 0951-4198
1097-0231
language eng
recordid cdi_proquest_miscellaneous_1239059740
source Wiley-Blackwell Read & Publish Collection
subjects Amino Acids - chemistry
Atmospheric Pressure
Ions - chemistry
Mass Spectrometry - methods
Protons
title Fragmentation patterns of protonated amino acids formed by atmospheric pressure chemical ionization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A22%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fragmentation%20patterns%20of%20protonated%20amino%20acids%20formed%20by%20atmospheric%20pressure%20chemical%20ionization&rft.jtitle=Rapid%20communications%20in%20mass%20spectrometry&rft.au=Choi,%20Sung-Seen&rft.date=2013-01-15&rft.volume=27&rft.issue=1&rft.spage=143&rft.epage=151&rft.pages=143-151&rft.issn=0951-4198&rft.eissn=1097-0231&rft_id=info:doi/10.1002/rcm.6411&rft_dat=%3Cproquest_cross%3E1239059740%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3871-b11447aac8415c426496598ffea8895214120256e675f603856d1bb869a94dba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1237893790&rft_id=info:pmid/23239327&rfr_iscdi=true