Loading…

Monte Carlo method applied to modeling copper transport in river sediments

Monte Carlo simulation (MCS) methodology has been applied to explain the variability of parameters for pollutant transport and fate modeling. In this study, the MCS method was used to evaluate the transport and fate of copper in the sediment of the Tibagi River sub-basin tributaries, Southern Brazil...

Full description

Saved in:
Bibliographic Details
Published in:Stochastic environmental research and risk assessment 2012-12, Vol.26 (8), p.1063-1079
Main Authors: Corazza, Marcela Z., Abrão, Taufik, Lepri, Fábio Grandis, Gimenez, Sonia M. N., Oliveira, Elisabeth, Santos, Maria Josefa
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c373t-2235c4eae0d36278571797c3a97e6c6a727d0f9dcd142377530b5c34fe5548c03
cites cdi_FETCH-LOGICAL-c373t-2235c4eae0d36278571797c3a97e6c6a727d0f9dcd142377530b5c34fe5548c03
container_end_page 1079
container_issue 8
container_start_page 1063
container_title Stochastic environmental research and risk assessment
container_volume 26
creator Corazza, Marcela Z.
Abrão, Taufik
Lepri, Fábio Grandis
Gimenez, Sonia M. N.
Oliveira, Elisabeth
Santos, Maria Josefa
description Monte Carlo simulation (MCS) methodology has been applied to explain the variability of parameters for pollutant transport and fate modeling. In this study, the MCS method was used to evaluate the transport and fate of copper in the sediment of the Tibagi River sub-basin tributaries, Southern Brazil. The statistical distribution of the variables was described by a dataset obtained for copper concentration using sequential extraction, organic matter (OM) amount, and pH. The proposed stochastic spatial model for the copper transport in the river sediment was discussed and implemented by the MCS technique using the MatLab 7.3™ mathematical software tool. In order to test some hypotheses, the sediment and the water column in the river ecosystem were considered as compartments. The proposed stochastic spatial model makes it possible to predict copper mobility and associated risks as a function of the organic matter input into aquatic systems. The metal mobility can increase with the OM posing a rising environmental risk.
doi_str_mv 10.1007/s00477-012-0564-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1257769022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1257769022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-2235c4eae0d36278571797c3a97e6c6a727d0f9dcd142377530b5c34fe5548c03</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWGp_gLuAGzejeU46Syk-qbjRdUiTOzUyk4xJKvjvnaEiIri6l8s55x4-hE4puaCEqMtMiFCqIpRVRNaiYgdoRgWvK85kc_izC3KMFjn7zeiRvGkomaGHxxgK4JVJXcQ9lNfosBmGzoPDZbxEB50PW2zjMEDCJZmQh5gK9gEn_zGeMjjfQyj5BB21psuw-J5z9HJz_by6q9ZPt_erq3VlueKlYoxLK8AAcbxmaikVVY2y3DQKalsbxZQjbeOso4JxNTYlG2m5aEFKsbSEz9H5PndI8X0HuejeZwtdZwLEXdaUSaXqhoyP5ujsj_Qt7lIY22lKFZFLrsQUSPcqm2LOCVo9JN-b9Kkp0RNgvQesR8B6AqynZLb35FEbtpB-Jf9r-gLb1HwT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1170583740</pqid></control><display><type>article</type><title>Monte Carlo method applied to modeling copper transport in river sediments</title><source>Springer Link</source><creator>Corazza, Marcela Z. ; Abrão, Taufik ; Lepri, Fábio Grandis ; Gimenez, Sonia M. N. ; Oliveira, Elisabeth ; Santos, Maria Josefa</creator><creatorcontrib>Corazza, Marcela Z. ; Abrão, Taufik ; Lepri, Fábio Grandis ; Gimenez, Sonia M. N. ; Oliveira, Elisabeth ; Santos, Maria Josefa</creatorcontrib><description>Monte Carlo simulation (MCS) methodology has been applied to explain the variability of parameters for pollutant transport and fate modeling. In this study, the MCS method was used to evaluate the transport and fate of copper in the sediment of the Tibagi River sub-basin tributaries, Southern Brazil. The statistical distribution of the variables was described by a dataset obtained for copper concentration using sequential extraction, organic matter (OM) amount, and pH. The proposed stochastic spatial model for the copper transport in the river sediment was discussed and implemented by the MCS technique using the MatLab 7.3™ mathematical software tool. In order to test some hypotheses, the sediment and the water column in the river ecosystem were considered as compartments. The proposed stochastic spatial model makes it possible to predict copper mobility and associated risks as a function of the organic matter input into aquatic systems. The metal mobility can increase with the OM posing a rising environmental risk.</description><identifier>ISSN: 1436-3240</identifier><identifier>EISSN: 1436-3259</identifier><identifier>DOI: 10.1007/s00477-012-0564-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Aquatic ecosystems ; Aquatic environment ; Aquatic Pollution ; Chemistry and Earth Sciences ; Computational Intelligence ; Computer Science ; Copper ; Earth and Environmental Science ; Earth Sciences ; Environment ; Environmental risk ; Fluvial sediments ; Math. Appl. in Environmental Science ; Monte Carlo simulation ; Organic matter ; Original Paper ; Physics ; Pollution dispersion ; Probability Theory and Stochastic Processes ; River basins ; Rivers ; Sediment transport ; Statistics for Engineering ; Waste Water Technology ; Water column ; Water Management ; Water Pollution Control</subject><ispartof>Stochastic environmental research and risk assessment, 2012-12, Vol.26 (8), p.1063-1079</ispartof><rights>Springer-Verlag 2012</rights><rights>Springer-Verlag Berlin Heidelberg 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-2235c4eae0d36278571797c3a97e6c6a727d0f9dcd142377530b5c34fe5548c03</citedby><cites>FETCH-LOGICAL-c373t-2235c4eae0d36278571797c3a97e6c6a727d0f9dcd142377530b5c34fe5548c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Corazza, Marcela Z.</creatorcontrib><creatorcontrib>Abrão, Taufik</creatorcontrib><creatorcontrib>Lepri, Fábio Grandis</creatorcontrib><creatorcontrib>Gimenez, Sonia M. N.</creatorcontrib><creatorcontrib>Oliveira, Elisabeth</creatorcontrib><creatorcontrib>Santos, Maria Josefa</creatorcontrib><title>Monte Carlo method applied to modeling copper transport in river sediments</title><title>Stochastic environmental research and risk assessment</title><addtitle>Stoch Environ Res Risk Assess</addtitle><description>Monte Carlo simulation (MCS) methodology has been applied to explain the variability of parameters for pollutant transport and fate modeling. In this study, the MCS method was used to evaluate the transport and fate of copper in the sediment of the Tibagi River sub-basin tributaries, Southern Brazil. The statistical distribution of the variables was described by a dataset obtained for copper concentration using sequential extraction, organic matter (OM) amount, and pH. The proposed stochastic spatial model for the copper transport in the river sediment was discussed and implemented by the MCS technique using the MatLab 7.3™ mathematical software tool. In order to test some hypotheses, the sediment and the water column in the river ecosystem were considered as compartments. The proposed stochastic spatial model makes it possible to predict copper mobility and associated risks as a function of the organic matter input into aquatic systems. The metal mobility can increase with the OM posing a rising environmental risk.</description><subject>Aquatic ecosystems</subject><subject>Aquatic environment</subject><subject>Aquatic Pollution</subject><subject>Chemistry and Earth Sciences</subject><subject>Computational Intelligence</subject><subject>Computer Science</subject><subject>Copper</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environment</subject><subject>Environmental risk</subject><subject>Fluvial sediments</subject><subject>Math. Appl. in Environmental Science</subject><subject>Monte Carlo simulation</subject><subject>Organic matter</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Pollution dispersion</subject><subject>Probability Theory and Stochastic Processes</subject><subject>River basins</subject><subject>Rivers</subject><subject>Sediment transport</subject><subject>Statistics for Engineering</subject><subject>Waste Water Technology</subject><subject>Water column</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>1436-3240</issn><issn>1436-3259</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWGp_gLuAGzejeU46Syk-qbjRdUiTOzUyk4xJKvjvnaEiIri6l8s55x4-hE4puaCEqMtMiFCqIpRVRNaiYgdoRgWvK85kc_izC3KMFjn7zeiRvGkomaGHxxgK4JVJXcQ9lNfosBmGzoPDZbxEB50PW2zjMEDCJZmQh5gK9gEn_zGeMjjfQyj5BB21psuw-J5z9HJz_by6q9ZPt_erq3VlueKlYoxLK8AAcbxmaikVVY2y3DQKalsbxZQjbeOso4JxNTYlG2m5aEFKsbSEz9H5PndI8X0HuejeZwtdZwLEXdaUSaXqhoyP5ujsj_Qt7lIY22lKFZFLrsQUSPcqm2LOCVo9JN-b9Kkp0RNgvQesR8B6AqynZLb35FEbtpB-Jf9r-gLb1HwT</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Corazza, Marcela Z.</creator><creator>Abrão, Taufik</creator><creator>Lepri, Fábio Grandis</creator><creator>Gimenez, Sonia M. N.</creator><creator>Oliveira, Elisabeth</creator><creator>Santos, Maria Josefa</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0W</scope><scope>SOI</scope><scope>7TG</scope><scope>7TV</scope><scope>7U1</scope><scope>7U2</scope><scope>KL.</scope></search><sort><creationdate>20121201</creationdate><title>Monte Carlo method applied to modeling copper transport in river sediments</title><author>Corazza, Marcela Z. ; Abrão, Taufik ; Lepri, Fábio Grandis ; Gimenez, Sonia M. N. ; Oliveira, Elisabeth ; Santos, Maria Josefa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-2235c4eae0d36278571797c3a97e6c6a727d0f9dcd142377530b5c34fe5548c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Aquatic ecosystems</topic><topic>Aquatic environment</topic><topic>Aquatic Pollution</topic><topic>Chemistry and Earth Sciences</topic><topic>Computational Intelligence</topic><topic>Computer Science</topic><topic>Copper</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environment</topic><topic>Environmental risk</topic><topic>Fluvial sediments</topic><topic>Math. Appl. in Environmental Science</topic><topic>Monte Carlo simulation</topic><topic>Organic matter</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Pollution dispersion</topic><topic>Probability Theory and Stochastic Processes</topic><topic>River basins</topic><topic>Rivers</topic><topic>Sediment transport</topic><topic>Statistics for Engineering</topic><topic>Waste Water Technology</topic><topic>Water column</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Corazza, Marcela Z.</creatorcontrib><creatorcontrib>Abrão, Taufik</creatorcontrib><creatorcontrib>Lepri, Fábio Grandis</creatorcontrib><creatorcontrib>Gimenez, Sonia M. N.</creatorcontrib><creatorcontrib>Oliveira, Elisabeth</creatorcontrib><creatorcontrib>Santos, Maria Josefa</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Agriculture &amp; Environmental Science Database</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Pollution Abstracts</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Stochastic environmental research and risk assessment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Corazza, Marcela Z.</au><au>Abrão, Taufik</au><au>Lepri, Fábio Grandis</au><au>Gimenez, Sonia M. N.</au><au>Oliveira, Elisabeth</au><au>Santos, Maria Josefa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monte Carlo method applied to modeling copper transport in river sediments</atitle><jtitle>Stochastic environmental research and risk assessment</jtitle><stitle>Stoch Environ Res Risk Assess</stitle><date>2012-12-01</date><risdate>2012</risdate><volume>26</volume><issue>8</issue><spage>1063</spage><epage>1079</epage><pages>1063-1079</pages><issn>1436-3240</issn><eissn>1436-3259</eissn><abstract>Monte Carlo simulation (MCS) methodology has been applied to explain the variability of parameters for pollutant transport and fate modeling. In this study, the MCS method was used to evaluate the transport and fate of copper in the sediment of the Tibagi River sub-basin tributaries, Southern Brazil. The statistical distribution of the variables was described by a dataset obtained for copper concentration using sequential extraction, organic matter (OM) amount, and pH. The proposed stochastic spatial model for the copper transport in the river sediment was discussed and implemented by the MCS technique using the MatLab 7.3™ mathematical software tool. In order to test some hypotheses, the sediment and the water column in the river ecosystem were considered as compartments. The proposed stochastic spatial model makes it possible to predict copper mobility and associated risks as a function of the organic matter input into aquatic systems. The metal mobility can increase with the OM posing a rising environmental risk.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00477-012-0564-2</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1436-3240
ispartof Stochastic environmental research and risk assessment, 2012-12, Vol.26 (8), p.1063-1079
issn 1436-3240
1436-3259
language eng
recordid cdi_proquest_miscellaneous_1257769022
source Springer Link
subjects Aquatic ecosystems
Aquatic environment
Aquatic Pollution
Chemistry and Earth Sciences
Computational Intelligence
Computer Science
Copper
Earth and Environmental Science
Earth Sciences
Environment
Environmental risk
Fluvial sediments
Math. Appl. in Environmental Science
Monte Carlo simulation
Organic matter
Original Paper
Physics
Pollution dispersion
Probability Theory and Stochastic Processes
River basins
Rivers
Sediment transport
Statistics for Engineering
Waste Water Technology
Water column
Water Management
Water Pollution Control
title Monte Carlo method applied to modeling copper transport in river sediments
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-22T23%3A16%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monte%20Carlo%20method%20applied%20to%20modeling%20copper%20transport%20in%20river%20sediments&rft.jtitle=Stochastic%20environmental%20research%20and%20risk%20assessment&rft.au=Corazza,%20Marcela%20Z.&rft.date=2012-12-01&rft.volume=26&rft.issue=8&rft.spage=1063&rft.epage=1079&rft.pages=1063-1079&rft.issn=1436-3240&rft.eissn=1436-3259&rft_id=info:doi/10.1007/s00477-012-0564-2&rft_dat=%3Cproquest_cross%3E1257769022%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c373t-2235c4eae0d36278571797c3a97e6c6a727d0f9dcd142377530b5c34fe5548c03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1170583740&rft_id=info:pmid/&rfr_iscdi=true