Loading…
Global climate change and carbon balance in forest ecosystems of boreal zones: Simulation modeling as a forecast tool
The individual-based system of models EFIMOD simulating carbon and nitrogen flows in forest ecosystems has been used for forecasting the response of forest ecosystems to various forest management regimes with climate change. As input data the forest inventory data for the Manturovskii forestry of th...
Saved in:
Published in: | Biology bulletin of the Russian Academy of Sciences 2010-12, Vol.37 (6), p.619-629 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The individual-based system of models EFIMOD simulating carbon and nitrogen flows in forest ecosystems has been used for forecasting the response of forest ecosystems to various forest management regimes with climate change. As input data the forest inventory data for the Manturovskii forestry of the Kostroma region were used. It has been shown that increase of mid-annual temperatures and precipitation influence the redistribution of carbon and nitrogen supply in organic form: supply increase of these elements in phytomass simultaneously with depletion of them in soil occurred. The most carbon and nitrogen accumulation in forest ecosystems occurs in the scenario without felling. In addition, in this scenario only the ecosystems of the modeling territory function as a carbon sink; in the other two scenarios (with selective and clear cutting) they function as a source of carbon. Climate changes greatly influence the decomposition rate of organic matter in soil, which leads to increased emission of carbon dioxide. The second consequence of the increase in the destruction rate is nitrogen increase in the soil in a form available for plants that entails productivity increase of stands. |
---|---|
ISSN: | 1062-3590 1608-3059 |
DOI: | 10.1134/S1062359010060105 |