Loading…

Fracture Behaviour Investigation into a Polymer-Bonded Explosive

:  Polymer‐bonded explosive (PBX) is used widely in weapon systems. Failure of PBX caused by mechanical damage is one of the sources of accidental ignitions. A brittle crack of PBX produces local heating, creating a ‘hot spot’ finally. Investigation into the tensile fracture behaviour of PBX is one...

Full description

Saved in:
Bibliographic Details
Published in:Strain 2012-12, Vol.48 (6), p.463-473
Main Authors: Jun-Ling, L. I., Hua, F. U., Duo-Wang, T. A. N., Fang-Yun, L. U., Rong, C. H. E. N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary::  Polymer‐bonded explosive (PBX) is used widely in weapon systems. Failure of PBX caused by mechanical damage is one of the sources of accidental ignitions. A brittle crack of PBX produces local heating, creating a ‘hot spot’ finally. Investigation into the tensile fracture behaviour of PBX is one of the main works to determine the failure mechanism. Although many researchers have carried out the quasi‐static Brazilian test to understand the damage evolution of PBX, the fracture feature of PBX under dynamic impact is rarely reported. In this article, dynamic Brazilian tests were conducted. A single‐pulse loading apparatus was used to ensure that specimen was loaded only once during a dynamic Brazilian test. High‐speed camera, digital image correlation and micro‐observation techniques were adopted for strain measurement and microfracture observation. All the dynamic tensile crack exhibits transgranular fracture, which indicates more heat would released by the propagation of crack and more friction between fractured crystal surfaces. On the basis of the theories of interface debonding and transgranular fracture, larger crystals are more prone to crack, whereas smaller crystals simply debond with neighbouring binders. Discrete element method simulation results show that specimen with interface debonding microcracks was able to sustain additional load until transgranular fracture begins.
ISSN:0039-2103
1475-1305
DOI:10.1111/j.1475-1305.2012.00842.x