Loading…
A Landesman–Lazer-type condition for asymptotically linear second-order equations with a singularity
We consider the T-periodic problem \begin{gather*}x''+g(t,x)=0,\\x(0)=x(T),\qq x'(0)=x'(T),\end{gather*} where g: [0,T]×]0,+∞[→ℝ exhibits a singularity of a repulsive type at the origin, and an asymptotically linear behaviour at infinity. In particular, for large x, g(t, x) is co...
Saved in:
Published in: | Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 2012-12, Vol.142 (6), p.1263-1277 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c350t-310dc4c64a003da52a8b78a3100345a769810cb986fe7375fa371dff03d851c13 |
---|---|
cites | |
container_end_page | 1277 |
container_issue | 6 |
container_start_page | 1263 |
container_title | Proceedings of the Royal Society of Edinburgh. Section A. Mathematics |
container_volume | 142 |
creator | Fonda, Alessandro Garrione, Maurizio |
description | We consider the T-periodic problem \begin{gather*}x''+g(t,x)=0,\\x(0)=x(T),\qq x'(0)=x'(T),\end{gather*} where g: [0,T]×]0,+∞[→ℝ exhibits a singularity of a repulsive type at the origin, and an asymptotically linear behaviour at infinity. In particular, for large x, g(t, x) is controlled from both sides by two consecutive asymptotes of the T-periodic Fučik spectrum, with possible equality on one side. Using a suitable Landesman–Lazer-type condition, we prove the existence of a solution. |
doi_str_mv | 10.1017/S0308210511000151 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1266711759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0308210511000151</cupid><sourcerecordid>1266711759</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-310dc4c64a003da52a8b78a3100345a769810cb986fe7375fa371dff03d851c13</originalsourceid><addsrcrecordid>eNp10M1KxDAQB_AgCq6rD-At4MVLNdM0Tfe4LH5BwYN6LrNpumZpm92kRerJd_ANfRJTdg-ieBqY-f2HYQg5B3YFDOT1E-Msi4EJAMYYCDggE0gkjyTEySGZjONonB-TE-_XwaSZkBNSzWmObal9g-3Xx2eO79pF3bDRVNm2NJ2xLa2so-iHZtPZziis64HWptXoqNejiqwrtaN62-PoPX0z3StF6k276mt0phtOyVGFtddn-zolL7c3z4v7KH-8e1jM80hxwbqIAytVotIEGeMlihizpcwwtBlPBMp0lgFTy1mWVlpyKSrkEsqqCjgToIBPyeVu78bZba99VzTGK13X2Grb-wLiNJUAUswCvfhF17Z3bbguKIi5AC5ZULBTylnvna6KjTMNuqEAVoyfL_58PmT4PoPN0plypX-s_jf1DaWjhfU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1212351370</pqid></control><display><type>article</type><title>A Landesman–Lazer-type condition for asymptotically linear second-order equations with a singularity</title><source>Cambridge University Press</source><creator>Fonda, Alessandro ; Garrione, Maurizio</creator><creatorcontrib>Fonda, Alessandro ; Garrione, Maurizio</creatorcontrib><description>We consider the T-periodic problem \begin{gather*}x''+g(t,x)=0,\\x(0)=x(T),\qq x'(0)=x'(T),\end{gather*} where g: [0,T]×]0,+∞[→ℝ exhibits a singularity of a repulsive type at the origin, and an asymptotically linear behaviour at infinity. In particular, for large x, g(t, x) is controlled from both sides by two consecutive asymptotes of the T-periodic Fučik spectrum, with possible equality on one side. Using a suitable Landesman–Lazer-type condition, we prove the existence of a solution.</description><identifier>ISSN: 0308-2105</identifier><identifier>EISSN: 1473-7124</identifier><identifier>DOI: 10.1017/S0308210511000151</identifier><language>eng</language><publisher>Edinburgh, UK: Royal Society of Edinburgh Scotland Foundation</publisher><subject>Asymptotes ; Asymptotic methods ; Asymptotic properties ; Infinity ; Mathematical analysis ; Origins ; Singularities</subject><ispartof>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, 2012-12, Vol.142 (6), p.1263-1277</ispartof><rights>Copyright © Royal Society of Edinburgh 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-310dc4c64a003da52a8b78a3100345a769810cb986fe7375fa371dff03d851c13</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0308210511000151/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,72831</link.rule.ids></links><search><creatorcontrib>Fonda, Alessandro</creatorcontrib><creatorcontrib>Garrione, Maurizio</creatorcontrib><title>A Landesman–Lazer-type condition for asymptotically linear second-order equations with a singularity</title><title>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics</title><addtitle>Proceedings of the Royal Society of Edinburgh: Section A Mathematics</addtitle><description>We consider the T-periodic problem \begin{gather*}x''+g(t,x)=0,\\x(0)=x(T),\qq x'(0)=x'(T),\end{gather*} where g: [0,T]×]0,+∞[→ℝ exhibits a singularity of a repulsive type at the origin, and an asymptotically linear behaviour at infinity. In particular, for large x, g(t, x) is controlled from both sides by two consecutive asymptotes of the T-periodic Fučik spectrum, with possible equality on one side. Using a suitable Landesman–Lazer-type condition, we prove the existence of a solution.</description><subject>Asymptotes</subject><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Infinity</subject><subject>Mathematical analysis</subject><subject>Origins</subject><subject>Singularities</subject><issn>0308-2105</issn><issn>1473-7124</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp10M1KxDAQB_AgCq6rD-At4MVLNdM0Tfe4LH5BwYN6LrNpumZpm92kRerJd_ANfRJTdg-ieBqY-f2HYQg5B3YFDOT1E-Msi4EJAMYYCDggE0gkjyTEySGZjONonB-TE-_XwaSZkBNSzWmObal9g-3Xx2eO79pF3bDRVNm2NJ2xLa2so-iHZtPZziis64HWptXoqNejiqwrtaN62-PoPX0z3StF6k276mt0phtOyVGFtddn-zolL7c3z4v7KH-8e1jM80hxwbqIAytVotIEGeMlihizpcwwtBlPBMp0lgFTy1mWVlpyKSrkEsqqCjgToIBPyeVu78bZba99VzTGK13X2Grb-wLiNJUAUswCvfhF17Z3bbguKIi5AC5ZULBTylnvna6KjTMNuqEAVoyfL_58PmT4PoPN0plypX-s_jf1DaWjhfU</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Fonda, Alessandro</creator><creator>Garrione, Maurizio</creator><general>Royal Society of Edinburgh Scotland Foundation</general><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20121201</creationdate><title>A Landesman–Lazer-type condition for asymptotically linear second-order equations with a singularity</title><author>Fonda, Alessandro ; Garrione, Maurizio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-310dc4c64a003da52a8b78a3100345a769810cb986fe7375fa371dff03d851c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Asymptotes</topic><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Infinity</topic><topic>Mathematical analysis</topic><topic>Origins</topic><topic>Singularities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fonda, Alessandro</creatorcontrib><creatorcontrib>Garrione, Maurizio</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fonda, Alessandro</au><au>Garrione, Maurizio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Landesman–Lazer-type condition for asymptotically linear second-order equations with a singularity</atitle><jtitle>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics</jtitle><addtitle>Proceedings of the Royal Society of Edinburgh: Section A Mathematics</addtitle><date>2012-12-01</date><risdate>2012</risdate><volume>142</volume><issue>6</issue><spage>1263</spage><epage>1277</epage><pages>1263-1277</pages><issn>0308-2105</issn><eissn>1473-7124</eissn><abstract>We consider the T-periodic problem \begin{gather*}x''+g(t,x)=0,\\x(0)=x(T),\qq x'(0)=x'(T),\end{gather*} where g: [0,T]×]0,+∞[→ℝ exhibits a singularity of a repulsive type at the origin, and an asymptotically linear behaviour at infinity. In particular, for large x, g(t, x) is controlled from both sides by two consecutive asymptotes of the T-periodic Fučik spectrum, with possible equality on one side. Using a suitable Landesman–Lazer-type condition, we prove the existence of a solution.</abstract><cop>Edinburgh, UK</cop><pub>Royal Society of Edinburgh Scotland Foundation</pub><doi>10.1017/S0308210511000151</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0308-2105 |
ispartof | Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, 2012-12, Vol.142 (6), p.1263-1277 |
issn | 0308-2105 1473-7124 |
language | eng |
recordid | cdi_proquest_miscellaneous_1266711759 |
source | Cambridge University Press |
subjects | Asymptotes Asymptotic methods Asymptotic properties Infinity Mathematical analysis Origins Singularities |
title | A Landesman–Lazer-type condition for asymptotically linear second-order equations with a singularity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A58%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Landesman%E2%80%93Lazer-type%20condition%20for%20asymptotically%20linear%20second-order%20equations%20with%20a%20singularity&rft.jtitle=Proceedings%20of%20the%20Royal%20Society%20of%20Edinburgh.%20Section%20A.%20Mathematics&rft.au=Fonda,%20Alessandro&rft.date=2012-12-01&rft.volume=142&rft.issue=6&rft.spage=1263&rft.epage=1277&rft.pages=1263-1277&rft.issn=0308-2105&rft.eissn=1473-7124&rft_id=info:doi/10.1017/S0308210511000151&rft_dat=%3Cproquest_cross%3E1266711759%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-310dc4c64a003da52a8b78a3100345a769810cb986fe7375fa371dff03d851c13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1212351370&rft_id=info:pmid/&rft_cupid=10_1017_S0308210511000151&rfr_iscdi=true |