Loading…
Intermetallic Compound Formation Mechanisms for Cu-Sn Solid–Liquid Interdiffusion Bonding
Cu-Sn solid–liquid interdiffusion (SLID) bonding is an evolving technique for wafer-level packaging which features robust, fine pitch and high temperature tolerance. The mechanisms of Cu-Sn SLID bonding for wafer-level bonding and three-dimensional (3-D) packaging applications have been studied by a...
Saved in:
Published in: | Journal of electronic materials 2012-09, Vol.41 (9), p.2453-2462 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c379t-36c6d42c434e6a2e456ae46a0d10c93a5d4f1041743adb95df8452de3753e0573 |
---|---|
cites | cdi_FETCH-LOGICAL-c379t-36c6d42c434e6a2e456ae46a0d10c93a5d4f1041743adb95df8452de3753e0573 |
container_end_page | 2462 |
container_issue | 9 |
container_start_page | 2453 |
container_title | Journal of electronic materials |
container_volume | 41 |
creator | Liu, H. Wang, K. Aasmundtveit, K.E. Hoivik, N. |
description | Cu-Sn solid–liquid interdiffusion (SLID) bonding is an evolving technique for wafer-level packaging which features robust, fine pitch and high temperature tolerance. The mechanisms of Cu-Sn SLID bonding for wafer-level bonding and three-dimensional (3-D) packaging applications have been studied by analyzing the microstructure evolution of Cu-Sn intermetallic compounds (IMCs) at elevated temperature up to 400°C. The bonding time required to achieve a single IMC phase (Cu
3
Sn) in the final interconnects was estimated according to the parabolic growth law with consideration of defect-induced deviation. The effect of predominantly Cu metal grain size on the Cu-Sn interdiffusion rate is discussed. The temperature versus time profile (ramp rate) is critical to control the morphology of scallops in the IMC. A low temperature ramp rate before reaching the bonding temperature is believed to be favorable in a SLID wafer-level bonding process. |
doi_str_mv | 10.1007/s11664-012-2060-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1266712157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1266712157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-36c6d42c434e6a2e456ae46a0d10c93a5d4f1041743adb95df8452de3753e0573</originalsourceid><addsrcrecordid>eNp1kEtKBDEURYMo2H4W4KxABCfRvPyqa6iNP2hx0AqCgxCTlEaqkjapGjhzD-7QlVjdLSKCozd4514uB6E9IEdASHmcAaTkmADFlEiC2RoageAMw1jer6MRYRKwoExsoq2cXwgBAWMYoYer0LnUuk43jTfFJLbz2AdbnMfU6s7HUFw786yDz20u6piKSY9noZjFxtvP94-pf-29LZYl1td1nxeR0xisD087aKPWTXa733cb3Z2f3U4u8fTm4mpyMsWGlVWHmTTScmo4405q6riQ2nGpiQViKqaF5TUQDiVn2j5WwtZjLqh1rBTMEVGybXS46p2n-Nq73KnWZ-OaRgcX-6yASlkChSW6_wd9iX0KwzoFhJFKlCWXAwUryqSYc3K1miff6vQ2QGqhW610q0G3WuhWbMgcfDfrbHRTJx2Mzz9BKjmtKIeBoysuD6_w5NLvBf-VfwG_9493</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1030957746</pqid></control><display><type>article</type><title>Intermetallic Compound Formation Mechanisms for Cu-Sn Solid–Liquid Interdiffusion Bonding</title><source>Springer Nature</source><creator>Liu, H. ; Wang, K. ; Aasmundtveit, K.E. ; Hoivik, N.</creator><creatorcontrib>Liu, H. ; Wang, K. ; Aasmundtveit, K.E. ; Hoivik, N.</creatorcontrib><description>Cu-Sn solid–liquid interdiffusion (SLID) bonding is an evolving technique for wafer-level packaging which features robust, fine pitch and high temperature tolerance. The mechanisms of Cu-Sn SLID bonding for wafer-level bonding and three-dimensional (3-D) packaging applications have been studied by analyzing the microstructure evolution of Cu-Sn intermetallic compounds (IMCs) at elevated temperature up to 400°C. The bonding time required to achieve a single IMC phase (Cu
3
Sn) in the final interconnects was estimated according to the parabolic growth law with consideration of defect-induced deviation. The effect of predominantly Cu metal grain size on the Cu-Sn interdiffusion rate is discussed. The temperature versus time profile (ramp rate) is critical to control the morphology of scallops in the IMC. A low temperature ramp rate before reaching the bonding temperature is believed to be favorable in a SLID wafer-level bonding process.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-012-2060-3</identifier><identifier>CODEN: JECMA5</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>3-D technology ; Applied sciences ; Bonding ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Copper ; Electronics ; Electronics and Microelectronics ; Exact sciences and technology ; Instrumentation ; Interdiffusion ; Intermetallic compounds ; Intermetallics ; Joining, thermal cutting: metallurgical aspects ; Materials ; Materials Science ; Metals ; Metals. Metallurgy ; Microelectromechanical systems ; Microelectronic fabrication (materials and surfaces technology) ; Optical and Electronic Materials ; Packaging ; Ramps ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Solid State Physics ; Three dimensional</subject><ispartof>Journal of electronic materials, 2012-09, Vol.41 (9), p.2453-2462</ispartof><rights>TMS 2012</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-36c6d42c434e6a2e456ae46a0d10c93a5d4f1041743adb95df8452de3753e0573</citedby><cites>FETCH-LOGICAL-c379t-36c6d42c434e6a2e456ae46a0d10c93a5d4f1041743adb95df8452de3753e0573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26429241$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, H.</creatorcontrib><creatorcontrib>Wang, K.</creatorcontrib><creatorcontrib>Aasmundtveit, K.E.</creatorcontrib><creatorcontrib>Hoivik, N.</creatorcontrib><title>Intermetallic Compound Formation Mechanisms for Cu-Sn Solid–Liquid Interdiffusion Bonding</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>Cu-Sn solid–liquid interdiffusion (SLID) bonding is an evolving technique for wafer-level packaging which features robust, fine pitch and high temperature tolerance. The mechanisms of Cu-Sn SLID bonding for wafer-level bonding and three-dimensional (3-D) packaging applications have been studied by analyzing the microstructure evolution of Cu-Sn intermetallic compounds (IMCs) at elevated temperature up to 400°C. The bonding time required to achieve a single IMC phase (Cu
3
Sn) in the final interconnects was estimated according to the parabolic growth law with consideration of defect-induced deviation. The effect of predominantly Cu metal grain size on the Cu-Sn interdiffusion rate is discussed. The temperature versus time profile (ramp rate) is critical to control the morphology of scallops in the IMC. A low temperature ramp rate before reaching the bonding temperature is believed to be favorable in a SLID wafer-level bonding process.</description><subject>3-D technology</subject><subject>Applied sciences</subject><subject>Bonding</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Copper</subject><subject>Electronics</subject><subject>Electronics and Microelectronics</subject><subject>Exact sciences and technology</subject><subject>Instrumentation</subject><subject>Interdiffusion</subject><subject>Intermetallic compounds</subject><subject>Intermetallics</subject><subject>Joining, thermal cutting: metallurgical aspects</subject><subject>Materials</subject><subject>Materials Science</subject><subject>Metals</subject><subject>Metals. Metallurgy</subject><subject>Microelectromechanical systems</subject><subject>Microelectronic fabrication (materials and surfaces technology)</subject><subject>Optical and Electronic Materials</subject><subject>Packaging</subject><subject>Ramps</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Solid State Physics</subject><subject>Three dimensional</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kEtKBDEURYMo2H4W4KxABCfRvPyqa6iNP2hx0AqCgxCTlEaqkjapGjhzD-7QlVjdLSKCozd4514uB6E9IEdASHmcAaTkmADFlEiC2RoageAMw1jer6MRYRKwoExsoq2cXwgBAWMYoYer0LnUuk43jTfFJLbz2AdbnMfU6s7HUFw786yDz20u6piKSY9noZjFxtvP94-pf-29LZYl1td1nxeR0xisD087aKPWTXa733cb3Z2f3U4u8fTm4mpyMsWGlVWHmTTScmo4405q6riQ2nGpiQViKqaF5TUQDiVn2j5WwtZjLqh1rBTMEVGybXS46p2n-Nq73KnWZ-OaRgcX-6yASlkChSW6_wd9iX0KwzoFhJFKlCWXAwUryqSYc3K1miff6vQ2QGqhW610q0G3WuhWbMgcfDfrbHRTJx2Mzz9BKjmtKIeBoysuD6_w5NLvBf-VfwG_9493</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Liu, H.</creator><creator>Wang, K.</creator><creator>Aasmundtveit, K.E.</creator><creator>Hoivik, N.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7QQ</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20120901</creationdate><title>Intermetallic Compound Formation Mechanisms for Cu-Sn Solid–Liquid Interdiffusion Bonding</title><author>Liu, H. ; Wang, K. ; Aasmundtveit, K.E. ; Hoivik, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-36c6d42c434e6a2e456ae46a0d10c93a5d4f1041743adb95df8452de3753e0573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>3-D technology</topic><topic>Applied sciences</topic><topic>Bonding</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Copper</topic><topic>Electronics</topic><topic>Electronics and Microelectronics</topic><topic>Exact sciences and technology</topic><topic>Instrumentation</topic><topic>Interdiffusion</topic><topic>Intermetallic compounds</topic><topic>Intermetallics</topic><topic>Joining, thermal cutting: metallurgical aspects</topic><topic>Materials</topic><topic>Materials Science</topic><topic>Metals</topic><topic>Metals. Metallurgy</topic><topic>Microelectromechanical systems</topic><topic>Microelectronic fabrication (materials and surfaces technology)</topic><topic>Optical and Electronic Materials</topic><topic>Packaging</topic><topic>Ramps</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Solid State Physics</topic><topic>Three dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, H.</creatorcontrib><creatorcontrib>Wang, K.</creatorcontrib><creatorcontrib>Aasmundtveit, K.E.</creatorcontrib><creatorcontrib>Hoivik, N.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest research library</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Ceramic Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, H.</au><au>Wang, K.</au><au>Aasmundtveit, K.E.</au><au>Hoivik, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intermetallic Compound Formation Mechanisms for Cu-Sn Solid–Liquid Interdiffusion Bonding</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2012-09-01</date><risdate>2012</risdate><volume>41</volume><issue>9</issue><spage>2453</spage><epage>2462</epage><pages>2453-2462</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><coden>JECMA5</coden><abstract>Cu-Sn solid–liquid interdiffusion (SLID) bonding is an evolving technique for wafer-level packaging which features robust, fine pitch and high temperature tolerance. The mechanisms of Cu-Sn SLID bonding for wafer-level bonding and three-dimensional (3-D) packaging applications have been studied by analyzing the microstructure evolution of Cu-Sn intermetallic compounds (IMCs) at elevated temperature up to 400°C. The bonding time required to achieve a single IMC phase (Cu
3
Sn) in the final interconnects was estimated according to the parabolic growth law with consideration of defect-induced deviation. The effect of predominantly Cu metal grain size on the Cu-Sn interdiffusion rate is discussed. The temperature versus time profile (ramp rate) is critical to control the morphology of scallops in the IMC. A low temperature ramp rate before reaching the bonding temperature is believed to be favorable in a SLID wafer-level bonding process.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11664-012-2060-3</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2012-09, Vol.41 (9), p.2453-2462 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_proquest_miscellaneous_1266712157 |
source | Springer Nature |
subjects | 3-D technology Applied sciences Bonding Characterization and Evaluation of Materials Chemistry and Materials Science Copper Electronics Electronics and Microelectronics Exact sciences and technology Instrumentation Interdiffusion Intermetallic compounds Intermetallics Joining, thermal cutting: metallurgical aspects Materials Materials Science Metals Metals. Metallurgy Microelectromechanical systems Microelectronic fabrication (materials and surfaces technology) Optical and Electronic Materials Packaging Ramps Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Solid State Physics Three dimensional |
title | Intermetallic Compound Formation Mechanisms for Cu-Sn Solid–Liquid Interdiffusion Bonding |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A28%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intermetallic%20Compound%20Formation%20Mechanisms%20for%20Cu-Sn%20Solid%E2%80%93Liquid%20Interdiffusion%20Bonding&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Liu,%20H.&rft.date=2012-09-01&rft.volume=41&rft.issue=9&rft.spage=2453&rft.epage=2462&rft.pages=2453-2462&rft.issn=0361-5235&rft.eissn=1543-186X&rft.coden=JECMA5&rft_id=info:doi/10.1007/s11664-012-2060-3&rft_dat=%3Cproquest_cross%3E1266712157%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c379t-36c6d42c434e6a2e456ae46a0d10c93a5d4f1041743adb95df8452de3753e0573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1030957746&rft_id=info:pmid/&rfr_iscdi=true |