Loading…

Intermetallic Compound Formation Mechanisms for Cu-Sn Solid–Liquid Interdiffusion Bonding

Cu-Sn solid–liquid interdiffusion (SLID) bonding is an evolving technique for wafer-level packaging which features robust, fine pitch and high temperature tolerance. The mechanisms of Cu-Sn SLID bonding for wafer-level bonding and three-dimensional (3-D) packaging applications have been studied by a...

Full description

Saved in:
Bibliographic Details
Published in:Journal of electronic materials 2012-09, Vol.41 (9), p.2453-2462
Main Authors: Liu, H., Wang, K., Aasmundtveit, K.E., Hoivik, N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c379t-36c6d42c434e6a2e456ae46a0d10c93a5d4f1041743adb95df8452de3753e0573
cites cdi_FETCH-LOGICAL-c379t-36c6d42c434e6a2e456ae46a0d10c93a5d4f1041743adb95df8452de3753e0573
container_end_page 2462
container_issue 9
container_start_page 2453
container_title Journal of electronic materials
container_volume 41
creator Liu, H.
Wang, K.
Aasmundtveit, K.E.
Hoivik, N.
description Cu-Sn solid–liquid interdiffusion (SLID) bonding is an evolving technique for wafer-level packaging which features robust, fine pitch and high temperature tolerance. The mechanisms of Cu-Sn SLID bonding for wafer-level bonding and three-dimensional (3-D) packaging applications have been studied by analyzing the microstructure evolution of Cu-Sn intermetallic compounds (IMCs) at elevated temperature up to 400°C. The bonding time required to achieve a single IMC phase (Cu 3 Sn) in the final interconnects was estimated according to the parabolic growth law with consideration of defect-induced deviation. The effect of predominantly Cu metal grain size on the Cu-Sn interdiffusion rate is discussed. The temperature versus time profile (ramp rate) is critical to control the morphology of scallops in the IMC. A low temperature ramp rate before reaching the bonding temperature is believed to be favorable in a SLID wafer-level bonding process.
doi_str_mv 10.1007/s11664-012-2060-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1266712157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1266712157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-36c6d42c434e6a2e456ae46a0d10c93a5d4f1041743adb95df8452de3753e0573</originalsourceid><addsrcrecordid>eNp1kEtKBDEURYMo2H4W4KxABCfRvPyqa6iNP2hx0AqCgxCTlEaqkjapGjhzD-7QlVjdLSKCozd4514uB6E9IEdASHmcAaTkmADFlEiC2RoageAMw1jer6MRYRKwoExsoq2cXwgBAWMYoYer0LnUuk43jTfFJLbz2AdbnMfU6s7HUFw786yDz20u6piKSY9noZjFxtvP94-pf-29LZYl1td1nxeR0xisD087aKPWTXa733cb3Z2f3U4u8fTm4mpyMsWGlVWHmTTScmo4405q6riQ2nGpiQViKqaF5TUQDiVn2j5WwtZjLqh1rBTMEVGybXS46p2n-Nq73KnWZ-OaRgcX-6yASlkChSW6_wd9iX0KwzoFhJFKlCWXAwUryqSYc3K1miff6vQ2QGqhW610q0G3WuhWbMgcfDfrbHRTJx2Mzz9BKjmtKIeBoysuD6_w5NLvBf-VfwG_9493</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1030957746</pqid></control><display><type>article</type><title>Intermetallic Compound Formation Mechanisms for Cu-Sn Solid–Liquid Interdiffusion Bonding</title><source>Springer Nature</source><creator>Liu, H. ; Wang, K. ; Aasmundtveit, K.E. ; Hoivik, N.</creator><creatorcontrib>Liu, H. ; Wang, K. ; Aasmundtveit, K.E. ; Hoivik, N.</creatorcontrib><description>Cu-Sn solid–liquid interdiffusion (SLID) bonding is an evolving technique for wafer-level packaging which features robust, fine pitch and high temperature tolerance. The mechanisms of Cu-Sn SLID bonding for wafer-level bonding and three-dimensional (3-D) packaging applications have been studied by analyzing the microstructure evolution of Cu-Sn intermetallic compounds (IMCs) at elevated temperature up to 400°C. The bonding time required to achieve a single IMC phase (Cu 3 Sn) in the final interconnects was estimated according to the parabolic growth law with consideration of defect-induced deviation. The effect of predominantly Cu metal grain size on the Cu-Sn interdiffusion rate is discussed. The temperature versus time profile (ramp rate) is critical to control the morphology of scallops in the IMC. A low temperature ramp rate before reaching the bonding temperature is believed to be favorable in a SLID wafer-level bonding process.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-012-2060-3</identifier><identifier>CODEN: JECMA5</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>3-D technology ; Applied sciences ; Bonding ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Copper ; Electronics ; Electronics and Microelectronics ; Exact sciences and technology ; Instrumentation ; Interdiffusion ; Intermetallic compounds ; Intermetallics ; Joining, thermal cutting: metallurgical aspects ; Materials ; Materials Science ; Metals ; Metals. Metallurgy ; Microelectromechanical systems ; Microelectronic fabrication (materials and surfaces technology) ; Optical and Electronic Materials ; Packaging ; Ramps ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Solid State Physics ; Three dimensional</subject><ispartof>Journal of electronic materials, 2012-09, Vol.41 (9), p.2453-2462</ispartof><rights>TMS 2012</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-36c6d42c434e6a2e456ae46a0d10c93a5d4f1041743adb95df8452de3753e0573</citedby><cites>FETCH-LOGICAL-c379t-36c6d42c434e6a2e456ae46a0d10c93a5d4f1041743adb95df8452de3753e0573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26429241$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, H.</creatorcontrib><creatorcontrib>Wang, K.</creatorcontrib><creatorcontrib>Aasmundtveit, K.E.</creatorcontrib><creatorcontrib>Hoivik, N.</creatorcontrib><title>Intermetallic Compound Formation Mechanisms for Cu-Sn Solid–Liquid Interdiffusion Bonding</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>Cu-Sn solid–liquid interdiffusion (SLID) bonding is an evolving technique for wafer-level packaging which features robust, fine pitch and high temperature tolerance. The mechanisms of Cu-Sn SLID bonding for wafer-level bonding and three-dimensional (3-D) packaging applications have been studied by analyzing the microstructure evolution of Cu-Sn intermetallic compounds (IMCs) at elevated temperature up to 400°C. The bonding time required to achieve a single IMC phase (Cu 3 Sn) in the final interconnects was estimated according to the parabolic growth law with consideration of defect-induced deviation. The effect of predominantly Cu metal grain size on the Cu-Sn interdiffusion rate is discussed. The temperature versus time profile (ramp rate) is critical to control the morphology of scallops in the IMC. A low temperature ramp rate before reaching the bonding temperature is believed to be favorable in a SLID wafer-level bonding process.</description><subject>3-D technology</subject><subject>Applied sciences</subject><subject>Bonding</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Copper</subject><subject>Electronics</subject><subject>Electronics and Microelectronics</subject><subject>Exact sciences and technology</subject><subject>Instrumentation</subject><subject>Interdiffusion</subject><subject>Intermetallic compounds</subject><subject>Intermetallics</subject><subject>Joining, thermal cutting: metallurgical aspects</subject><subject>Materials</subject><subject>Materials Science</subject><subject>Metals</subject><subject>Metals. Metallurgy</subject><subject>Microelectromechanical systems</subject><subject>Microelectronic fabrication (materials and surfaces technology)</subject><subject>Optical and Electronic Materials</subject><subject>Packaging</subject><subject>Ramps</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Solid State Physics</subject><subject>Three dimensional</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kEtKBDEURYMo2H4W4KxABCfRvPyqa6iNP2hx0AqCgxCTlEaqkjapGjhzD-7QlVjdLSKCozd4514uB6E9IEdASHmcAaTkmADFlEiC2RoageAMw1jer6MRYRKwoExsoq2cXwgBAWMYoYer0LnUuk43jTfFJLbz2AdbnMfU6s7HUFw786yDz20u6piKSY9noZjFxtvP94-pf-29LZYl1td1nxeR0xisD087aKPWTXa733cb3Z2f3U4u8fTm4mpyMsWGlVWHmTTScmo4405q6riQ2nGpiQViKqaF5TUQDiVn2j5WwtZjLqh1rBTMEVGybXS46p2n-Nq73KnWZ-OaRgcX-6yASlkChSW6_wd9iX0KwzoFhJFKlCWXAwUryqSYc3K1miff6vQ2QGqhW610q0G3WuhWbMgcfDfrbHRTJx2Mzz9BKjmtKIeBoysuD6_w5NLvBf-VfwG_9493</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Liu, H.</creator><creator>Wang, K.</creator><creator>Aasmundtveit, K.E.</creator><creator>Hoivik, N.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7QQ</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20120901</creationdate><title>Intermetallic Compound Formation Mechanisms for Cu-Sn Solid–Liquid Interdiffusion Bonding</title><author>Liu, H. ; Wang, K. ; Aasmundtveit, K.E. ; Hoivik, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-36c6d42c434e6a2e456ae46a0d10c93a5d4f1041743adb95df8452de3753e0573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>3-D technology</topic><topic>Applied sciences</topic><topic>Bonding</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Copper</topic><topic>Electronics</topic><topic>Electronics and Microelectronics</topic><topic>Exact sciences and technology</topic><topic>Instrumentation</topic><topic>Interdiffusion</topic><topic>Intermetallic compounds</topic><topic>Intermetallics</topic><topic>Joining, thermal cutting: metallurgical aspects</topic><topic>Materials</topic><topic>Materials Science</topic><topic>Metals</topic><topic>Metals. Metallurgy</topic><topic>Microelectromechanical systems</topic><topic>Microelectronic fabrication (materials and surfaces technology)</topic><topic>Optical and Electronic Materials</topic><topic>Packaging</topic><topic>Ramps</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Solid State Physics</topic><topic>Three dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, H.</creatorcontrib><creatorcontrib>Wang, K.</creatorcontrib><creatorcontrib>Aasmundtveit, K.E.</creatorcontrib><creatorcontrib>Hoivik, N.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest research library</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Ceramic Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, H.</au><au>Wang, K.</au><au>Aasmundtveit, K.E.</au><au>Hoivik, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intermetallic Compound Formation Mechanisms for Cu-Sn Solid–Liquid Interdiffusion Bonding</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2012-09-01</date><risdate>2012</risdate><volume>41</volume><issue>9</issue><spage>2453</spage><epage>2462</epage><pages>2453-2462</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><coden>JECMA5</coden><abstract>Cu-Sn solid–liquid interdiffusion (SLID) bonding is an evolving technique for wafer-level packaging which features robust, fine pitch and high temperature tolerance. The mechanisms of Cu-Sn SLID bonding for wafer-level bonding and three-dimensional (3-D) packaging applications have been studied by analyzing the microstructure evolution of Cu-Sn intermetallic compounds (IMCs) at elevated temperature up to 400°C. The bonding time required to achieve a single IMC phase (Cu 3 Sn) in the final interconnects was estimated according to the parabolic growth law with consideration of defect-induced deviation. The effect of predominantly Cu metal grain size on the Cu-Sn interdiffusion rate is discussed. The temperature versus time profile (ramp rate) is critical to control the morphology of scallops in the IMC. A low temperature ramp rate before reaching the bonding temperature is believed to be favorable in a SLID wafer-level bonding process.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11664-012-2060-3</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2012-09, Vol.41 (9), p.2453-2462
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_miscellaneous_1266712157
source Springer Nature
subjects 3-D technology
Applied sciences
Bonding
Characterization and Evaluation of Materials
Chemistry and Materials Science
Copper
Electronics
Electronics and Microelectronics
Exact sciences and technology
Instrumentation
Interdiffusion
Intermetallic compounds
Intermetallics
Joining, thermal cutting: metallurgical aspects
Materials
Materials Science
Metals
Metals. Metallurgy
Microelectromechanical systems
Microelectronic fabrication (materials and surfaces technology)
Optical and Electronic Materials
Packaging
Ramps
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Solid State Physics
Three dimensional
title Intermetallic Compound Formation Mechanisms for Cu-Sn Solid–Liquid Interdiffusion Bonding
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A28%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intermetallic%20Compound%20Formation%20Mechanisms%20for%20Cu-Sn%20Solid%E2%80%93Liquid%20Interdiffusion%20Bonding&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Liu,%20H.&rft.date=2012-09-01&rft.volume=41&rft.issue=9&rft.spage=2453&rft.epage=2462&rft.pages=2453-2462&rft.issn=0361-5235&rft.eissn=1543-186X&rft.coden=JECMA5&rft_id=info:doi/10.1007/s11664-012-2060-3&rft_dat=%3Cproquest_cross%3E1266712157%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c379t-36c6d42c434e6a2e456ae46a0d10c93a5d4f1041743adb95df8452de3753e0573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1030957746&rft_id=info:pmid/&rfr_iscdi=true