Loading…

Assessing spatial uncertainty in predictive geomorphological mapping: A multi-modelling approach

Maps of earth surface processes and the potential distribution of landforms make an important contribution to theoretical and applied geomorphology. Because decision making often depends on information based on spatial models, there is a great need to develop methodology to evaluate the spatial unce...

Full description

Saved in:
Bibliographic Details
Published in:Computers & geosciences 2010-03, Vol.36 (3), p.355-361
Main Authors: Luoto, Miska, Marmion, Mathieu, Hjort, Jan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a389t-4e3fc111023465d77f4d8ea8cbb72441b55a99ba30c8c69efe40c05e978067cc3
cites cdi_FETCH-LOGICAL-a389t-4e3fc111023465d77f4d8ea8cbb72441b55a99ba30c8c69efe40c05e978067cc3
container_end_page 361
container_issue 3
container_start_page 355
container_title Computers & geosciences
container_volume 36
creator Luoto, Miska
Marmion, Mathieu
Hjort, Jan
description Maps of earth surface processes and the potential distribution of landforms make an important contribution to theoretical and applied geomorphology. Because decision making often depends on information based on spatial models, there is a great need to develop methodology to evaluate the spatial uncertainty resulting from those models. In this study we developed a new method to produce maps of the uncertainty of predictions provided by ten state-of-the-art modelling techniques for sorted (SP) and non-sorted (NSP) patterned ground in subarctic Finland at a 1.0-ha resolution. Six uncertainty classes represent the modelling agreement between the different modelling techniques. The resulting uncertainty maps reflect the reliability of the estimates for the studied periglacial landforms in the modelled area. Our results showed a significant negative correlation between the degree of uncertainty and the accuracy of the modelling techniques. On average, when all ten models agreed, the mean area under the curve (AUC) values were 0.904 (NSP) and 0.896 (SP), these values decreased to 0.416 (NSP) and 0.518 (SP), respectively, when only five models agreed. Mapping of the uncertainty of predictions in geomorphology can help scientists to improve the reliability of their data and modelling results. The predictive maps can be interpreted simultaneously with the uncertainty information, improving understanding of the potential pitfalls of the modelling.
doi_str_mv 10.1016/j.cageo.2009.07.008
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1266739949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0098300409003203</els_id><sourcerecordid>1266739949</sourcerecordid><originalsourceid>FETCH-LOGICAL-a389t-4e3fc111023465d77f4d8ea8cbb72441b55a99ba30c8c69efe40c05e978067cc3</originalsourceid><addsrcrecordid>eNp9kDFv2zAQhYmgAeIm-QVZtAToIuUoSiJZoINhtEkBA12amaFPJ4eGJKqkbMD_PnQcZOx0w713797H2B2HggNvHnYF2i35ogTQBcgCQF2wBVdS5FKB-MIWaaFyAVBdsa8x7gCgLFW9YC_LGClGN26zONnZ2T7bj0hhtm6cj5kbsylQ63B2B8pSxODD9Op7v3WYpIOdpmT9ni2zYd_PLh98S31_upY2wVt8vWGXne0j3X7Ma_b86-ff1VO-_vP4e7Vc51YoPecViQ4551CKqqlbKbuqVWQVbjayrCq-qWur9cYKQIWNpo4qQKhJp36NRBTX7Nv5bor9t6c4m8FFTM_Ykfw-Gl42jRRaVzpJxVmKwccYqDNTcIMNR8PBnHianXnnaU48DUiTeCbX_UeAjal7F-yILn5ay7JOiN91P846Sm0PjoKJ6CgxbV0gnE3r3X9z3gCJEY4N</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1266739949</pqid></control><display><type>article</type><title>Assessing spatial uncertainty in predictive geomorphological mapping: A multi-modelling approach</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Luoto, Miska ; Marmion, Mathieu ; Hjort, Jan</creator><creatorcontrib>Luoto, Miska ; Marmion, Mathieu ; Hjort, Jan</creatorcontrib><description>Maps of earth surface processes and the potential distribution of landforms make an important contribution to theoretical and applied geomorphology. Because decision making often depends on information based on spatial models, there is a great need to develop methodology to evaluate the spatial uncertainty resulting from those models. In this study we developed a new method to produce maps of the uncertainty of predictions provided by ten state-of-the-art modelling techniques for sorted (SP) and non-sorted (NSP) patterned ground in subarctic Finland at a 1.0-ha resolution. Six uncertainty classes represent the modelling agreement between the different modelling techniques. The resulting uncertainty maps reflect the reliability of the estimates for the studied periglacial landforms in the modelled area. Our results showed a significant negative correlation between the degree of uncertainty and the accuracy of the modelling techniques. On average, when all ten models agreed, the mean area under the curve (AUC) values were 0.904 (NSP) and 0.896 (SP), these values decreased to 0.416 (NSP) and 0.518 (SP), respectively, when only five models agreed. Mapping of the uncertainty of predictions in geomorphology can help scientists to improve the reliability of their data and modelling results. The predictive maps can be interpreted simultaneously with the uncertainty information, improving understanding of the potential pitfalls of the modelling.</description><identifier>ISSN: 0098-3004</identifier><identifier>EISSN: 1873-7803</identifier><identifier>DOI: 10.1016/j.cageo.2009.07.008</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Accuracy ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Geomorphology ; Landforms ; Mapping ; Mathematical models ; Modelling ; Patterned ground ; Periglacial ; Uncertainty</subject><ispartof>Computers &amp; geosciences, 2010-03, Vol.36 (3), p.355-361</ispartof><rights>2009 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a389t-4e3fc111023465d77f4d8ea8cbb72441b55a99ba30c8c69efe40c05e978067cc3</citedby><cites>FETCH-LOGICAL-a389t-4e3fc111023465d77f4d8ea8cbb72441b55a99ba30c8c69efe40c05e978067cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22509808$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Luoto, Miska</creatorcontrib><creatorcontrib>Marmion, Mathieu</creatorcontrib><creatorcontrib>Hjort, Jan</creatorcontrib><title>Assessing spatial uncertainty in predictive geomorphological mapping: A multi-modelling approach</title><title>Computers &amp; geosciences</title><description>Maps of earth surface processes and the potential distribution of landforms make an important contribution to theoretical and applied geomorphology. Because decision making often depends on information based on spatial models, there is a great need to develop methodology to evaluate the spatial uncertainty resulting from those models. In this study we developed a new method to produce maps of the uncertainty of predictions provided by ten state-of-the-art modelling techniques for sorted (SP) and non-sorted (NSP) patterned ground in subarctic Finland at a 1.0-ha resolution. Six uncertainty classes represent the modelling agreement between the different modelling techniques. The resulting uncertainty maps reflect the reliability of the estimates for the studied periglacial landforms in the modelled area. Our results showed a significant negative correlation between the degree of uncertainty and the accuracy of the modelling techniques. On average, when all ten models agreed, the mean area under the curve (AUC) values were 0.904 (NSP) and 0.896 (SP), these values decreased to 0.416 (NSP) and 0.518 (SP), respectively, when only five models agreed. Mapping of the uncertainty of predictions in geomorphology can help scientists to improve the reliability of their data and modelling results. The predictive maps can be interpreted simultaneously with the uncertainty information, improving understanding of the potential pitfalls of the modelling.</description><subject>Accuracy</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Geomorphology</subject><subject>Landforms</subject><subject>Mapping</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Patterned ground</subject><subject>Periglacial</subject><subject>Uncertainty</subject><issn>0098-3004</issn><issn>1873-7803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kDFv2zAQhYmgAeIm-QVZtAToIuUoSiJZoINhtEkBA12amaFPJ4eGJKqkbMD_PnQcZOx0w713797H2B2HggNvHnYF2i35ogTQBcgCQF2wBVdS5FKB-MIWaaFyAVBdsa8x7gCgLFW9YC_LGClGN26zONnZ2T7bj0hhtm6cj5kbsylQ63B2B8pSxODD9Op7v3WYpIOdpmT9ni2zYd_PLh98S31_upY2wVt8vWGXne0j3X7Ma_b86-ff1VO-_vP4e7Vc51YoPecViQ4551CKqqlbKbuqVWQVbjayrCq-qWur9cYKQIWNpo4qQKhJp36NRBTX7Nv5bor9t6c4m8FFTM_Ykfw-Gl42jRRaVzpJxVmKwccYqDNTcIMNR8PBnHianXnnaU48DUiTeCbX_UeAjal7F-yILn5ay7JOiN91P846Sm0PjoKJ6CgxbV0gnE3r3X9z3gCJEY4N</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Luoto, Miska</creator><creator>Marmion, Mathieu</creator><creator>Hjort, Jan</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100301</creationdate><title>Assessing spatial uncertainty in predictive geomorphological mapping: A multi-modelling approach</title><author>Luoto, Miska ; Marmion, Mathieu ; Hjort, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a389t-4e3fc111023465d77f4d8ea8cbb72441b55a99ba30c8c69efe40c05e978067cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Accuracy</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Geomorphology</topic><topic>Landforms</topic><topic>Mapping</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Patterned ground</topic><topic>Periglacial</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luoto, Miska</creatorcontrib><creatorcontrib>Marmion, Mathieu</creatorcontrib><creatorcontrib>Hjort, Jan</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; geosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luoto, Miska</au><au>Marmion, Mathieu</au><au>Hjort, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing spatial uncertainty in predictive geomorphological mapping: A multi-modelling approach</atitle><jtitle>Computers &amp; geosciences</jtitle><date>2010-03-01</date><risdate>2010</risdate><volume>36</volume><issue>3</issue><spage>355</spage><epage>361</epage><pages>355-361</pages><issn>0098-3004</issn><eissn>1873-7803</eissn><abstract>Maps of earth surface processes and the potential distribution of landforms make an important contribution to theoretical and applied geomorphology. Because decision making often depends on information based on spatial models, there is a great need to develop methodology to evaluate the spatial uncertainty resulting from those models. In this study we developed a new method to produce maps of the uncertainty of predictions provided by ten state-of-the-art modelling techniques for sorted (SP) and non-sorted (NSP) patterned ground in subarctic Finland at a 1.0-ha resolution. Six uncertainty classes represent the modelling agreement between the different modelling techniques. The resulting uncertainty maps reflect the reliability of the estimates for the studied periglacial landforms in the modelled area. Our results showed a significant negative correlation between the degree of uncertainty and the accuracy of the modelling techniques. On average, when all ten models agreed, the mean area under the curve (AUC) values were 0.904 (NSP) and 0.896 (SP), these values decreased to 0.416 (NSP) and 0.518 (SP), respectively, when only five models agreed. Mapping of the uncertainty of predictions in geomorphology can help scientists to improve the reliability of their data and modelling results. The predictive maps can be interpreted simultaneously with the uncertainty information, improving understanding of the potential pitfalls of the modelling.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cageo.2009.07.008</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0098-3004
ispartof Computers & geosciences, 2010-03, Vol.36 (3), p.355-361
issn 0098-3004
1873-7803
language eng
recordid cdi_proquest_miscellaneous_1266739949
source ScienceDirect Freedom Collection 2022-2024
subjects Accuracy
Earth sciences
Earth, ocean, space
Exact sciences and technology
Geomorphology
Landforms
Mapping
Mathematical models
Modelling
Patterned ground
Periglacial
Uncertainty
title Assessing spatial uncertainty in predictive geomorphological mapping: A multi-modelling approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A50%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20spatial%20uncertainty%20in%20predictive%20geomorphological%20mapping:%20A%20multi-modelling%20approach&rft.jtitle=Computers%20&%20geosciences&rft.au=Luoto,%20Miska&rft.date=2010-03-01&rft.volume=36&rft.issue=3&rft.spage=355&rft.epage=361&rft.pages=355-361&rft.issn=0098-3004&rft.eissn=1873-7803&rft_id=info:doi/10.1016/j.cageo.2009.07.008&rft_dat=%3Cproquest_cross%3E1266739949%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a389t-4e3fc111023465d77f4d8ea8cbb72441b55a99ba30c8c69efe40c05e978067cc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1266739949&rft_id=info:pmid/&rfr_iscdi=true