Loading…
Assessing spatial uncertainty in predictive geomorphological mapping: A multi-modelling approach
Maps of earth surface processes and the potential distribution of landforms make an important contribution to theoretical and applied geomorphology. Because decision making often depends on information based on spatial models, there is a great need to develop methodology to evaluate the spatial unce...
Saved in:
Published in: | Computers & geosciences 2010-03, Vol.36 (3), p.355-361 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a389t-4e3fc111023465d77f4d8ea8cbb72441b55a99ba30c8c69efe40c05e978067cc3 |
---|---|
cites | cdi_FETCH-LOGICAL-a389t-4e3fc111023465d77f4d8ea8cbb72441b55a99ba30c8c69efe40c05e978067cc3 |
container_end_page | 361 |
container_issue | 3 |
container_start_page | 355 |
container_title | Computers & geosciences |
container_volume | 36 |
creator | Luoto, Miska Marmion, Mathieu Hjort, Jan |
description | Maps of earth surface processes and the potential distribution of landforms make an important contribution to theoretical and applied geomorphology. Because decision making often depends on information based on spatial models, there is a great need to develop methodology to evaluate the spatial uncertainty resulting from those models. In this study we developed a new method to produce maps of the uncertainty of predictions provided by ten state-of-the-art modelling techniques for sorted (SP) and non-sorted (NSP) patterned ground in subarctic Finland at a 1.0-ha resolution. Six uncertainty classes represent the modelling agreement between the different modelling techniques. The resulting uncertainty maps reflect the reliability of the estimates for the studied periglacial landforms in the modelled area. Our results showed a significant negative correlation between the degree of uncertainty and the accuracy of the modelling techniques. On average, when all ten models agreed, the mean area under the curve (AUC) values were 0.904 (NSP) and 0.896 (SP), these values decreased to 0.416 (NSP) and 0.518 (SP), respectively, when only five models agreed. Mapping of the uncertainty of predictions in geomorphology can help scientists to improve the reliability of their data and modelling results. The predictive maps can be interpreted simultaneously with the uncertainty information, improving understanding of the potential pitfalls of the modelling. |
doi_str_mv | 10.1016/j.cageo.2009.07.008 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1266739949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0098300409003203</els_id><sourcerecordid>1266739949</sourcerecordid><originalsourceid>FETCH-LOGICAL-a389t-4e3fc111023465d77f4d8ea8cbb72441b55a99ba30c8c69efe40c05e978067cc3</originalsourceid><addsrcrecordid>eNp9kDFv2zAQhYmgAeIm-QVZtAToIuUoSiJZoINhtEkBA12amaFPJ4eGJKqkbMD_PnQcZOx0w713797H2B2HggNvHnYF2i35ogTQBcgCQF2wBVdS5FKB-MIWaaFyAVBdsa8x7gCgLFW9YC_LGClGN26zONnZ2T7bj0hhtm6cj5kbsylQ63B2B8pSxODD9Op7v3WYpIOdpmT9ni2zYd_PLh98S31_upY2wVt8vWGXne0j3X7Ma_b86-ff1VO-_vP4e7Vc51YoPecViQ4551CKqqlbKbuqVWQVbjayrCq-qWur9cYKQIWNpo4qQKhJp36NRBTX7Nv5bor9t6c4m8FFTM_Ykfw-Gl42jRRaVzpJxVmKwccYqDNTcIMNR8PBnHianXnnaU48DUiTeCbX_UeAjal7F-yILn5ay7JOiN91P846Sm0PjoKJ6CgxbV0gnE3r3X9z3gCJEY4N</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1266739949</pqid></control><display><type>article</type><title>Assessing spatial uncertainty in predictive geomorphological mapping: A multi-modelling approach</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Luoto, Miska ; Marmion, Mathieu ; Hjort, Jan</creator><creatorcontrib>Luoto, Miska ; Marmion, Mathieu ; Hjort, Jan</creatorcontrib><description>Maps of earth surface processes and the potential distribution of landforms make an important contribution to theoretical and applied geomorphology. Because decision making often depends on information based on spatial models, there is a great need to develop methodology to evaluate the spatial uncertainty resulting from those models. In this study we developed a new method to produce maps of the uncertainty of predictions provided by ten state-of-the-art modelling techniques for sorted (SP) and non-sorted (NSP) patterned ground in subarctic Finland at a 1.0-ha resolution. Six uncertainty classes represent the modelling agreement between the different modelling techniques. The resulting uncertainty maps reflect the reliability of the estimates for the studied periglacial landforms in the modelled area. Our results showed a significant negative correlation between the degree of uncertainty and the accuracy of the modelling techniques. On average, when all ten models agreed, the mean area under the curve (AUC) values were 0.904 (NSP) and 0.896 (SP), these values decreased to 0.416 (NSP) and 0.518 (SP), respectively, when only five models agreed. Mapping of the uncertainty of predictions in geomorphology can help scientists to improve the reliability of their data and modelling results. The predictive maps can be interpreted simultaneously with the uncertainty information, improving understanding of the potential pitfalls of the modelling.</description><identifier>ISSN: 0098-3004</identifier><identifier>EISSN: 1873-7803</identifier><identifier>DOI: 10.1016/j.cageo.2009.07.008</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Accuracy ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Geomorphology ; Landforms ; Mapping ; Mathematical models ; Modelling ; Patterned ground ; Periglacial ; Uncertainty</subject><ispartof>Computers & geosciences, 2010-03, Vol.36 (3), p.355-361</ispartof><rights>2009 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a389t-4e3fc111023465d77f4d8ea8cbb72441b55a99ba30c8c69efe40c05e978067cc3</citedby><cites>FETCH-LOGICAL-a389t-4e3fc111023465d77f4d8ea8cbb72441b55a99ba30c8c69efe40c05e978067cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22509808$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Luoto, Miska</creatorcontrib><creatorcontrib>Marmion, Mathieu</creatorcontrib><creatorcontrib>Hjort, Jan</creatorcontrib><title>Assessing spatial uncertainty in predictive geomorphological mapping: A multi-modelling approach</title><title>Computers & geosciences</title><description>Maps of earth surface processes and the potential distribution of landforms make an important contribution to theoretical and applied geomorphology. Because decision making often depends on information based on spatial models, there is a great need to develop methodology to evaluate the spatial uncertainty resulting from those models. In this study we developed a new method to produce maps of the uncertainty of predictions provided by ten state-of-the-art modelling techniques for sorted (SP) and non-sorted (NSP) patterned ground in subarctic Finland at a 1.0-ha resolution. Six uncertainty classes represent the modelling agreement between the different modelling techniques. The resulting uncertainty maps reflect the reliability of the estimates for the studied periglacial landforms in the modelled area. Our results showed a significant negative correlation between the degree of uncertainty and the accuracy of the modelling techniques. On average, when all ten models agreed, the mean area under the curve (AUC) values were 0.904 (NSP) and 0.896 (SP), these values decreased to 0.416 (NSP) and 0.518 (SP), respectively, when only five models agreed. Mapping of the uncertainty of predictions in geomorphology can help scientists to improve the reliability of their data and modelling results. The predictive maps can be interpreted simultaneously with the uncertainty information, improving understanding of the potential pitfalls of the modelling.</description><subject>Accuracy</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Geomorphology</subject><subject>Landforms</subject><subject>Mapping</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Patterned ground</subject><subject>Periglacial</subject><subject>Uncertainty</subject><issn>0098-3004</issn><issn>1873-7803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kDFv2zAQhYmgAeIm-QVZtAToIuUoSiJZoINhtEkBA12amaFPJ4eGJKqkbMD_PnQcZOx0w713797H2B2HggNvHnYF2i35ogTQBcgCQF2wBVdS5FKB-MIWaaFyAVBdsa8x7gCgLFW9YC_LGClGN26zONnZ2T7bj0hhtm6cj5kbsylQ63B2B8pSxODD9Op7v3WYpIOdpmT9ni2zYd_PLh98S31_upY2wVt8vWGXne0j3X7Ma_b86-ff1VO-_vP4e7Vc51YoPecViQ4551CKqqlbKbuqVWQVbjayrCq-qWur9cYKQIWNpo4qQKhJp36NRBTX7Nv5bor9t6c4m8FFTM_Ykfw-Gl42jRRaVzpJxVmKwccYqDNTcIMNR8PBnHianXnnaU48DUiTeCbX_UeAjal7F-yILn5ay7JOiN91P846Sm0PjoKJ6CgxbV0gnE3r3X9z3gCJEY4N</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Luoto, Miska</creator><creator>Marmion, Mathieu</creator><creator>Hjort, Jan</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100301</creationdate><title>Assessing spatial uncertainty in predictive geomorphological mapping: A multi-modelling approach</title><author>Luoto, Miska ; Marmion, Mathieu ; Hjort, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a389t-4e3fc111023465d77f4d8ea8cbb72441b55a99ba30c8c69efe40c05e978067cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Accuracy</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Geomorphology</topic><topic>Landforms</topic><topic>Mapping</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Patterned ground</topic><topic>Periglacial</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luoto, Miska</creatorcontrib><creatorcontrib>Marmion, Mathieu</creatorcontrib><creatorcontrib>Hjort, Jan</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & geosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luoto, Miska</au><au>Marmion, Mathieu</au><au>Hjort, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing spatial uncertainty in predictive geomorphological mapping: A multi-modelling approach</atitle><jtitle>Computers & geosciences</jtitle><date>2010-03-01</date><risdate>2010</risdate><volume>36</volume><issue>3</issue><spage>355</spage><epage>361</epage><pages>355-361</pages><issn>0098-3004</issn><eissn>1873-7803</eissn><abstract>Maps of earth surface processes and the potential distribution of landforms make an important contribution to theoretical and applied geomorphology. Because decision making often depends on information based on spatial models, there is a great need to develop methodology to evaluate the spatial uncertainty resulting from those models. In this study we developed a new method to produce maps of the uncertainty of predictions provided by ten state-of-the-art modelling techniques for sorted (SP) and non-sorted (NSP) patterned ground in subarctic Finland at a 1.0-ha resolution. Six uncertainty classes represent the modelling agreement between the different modelling techniques. The resulting uncertainty maps reflect the reliability of the estimates for the studied periglacial landforms in the modelled area. Our results showed a significant negative correlation between the degree of uncertainty and the accuracy of the modelling techniques. On average, when all ten models agreed, the mean area under the curve (AUC) values were 0.904 (NSP) and 0.896 (SP), these values decreased to 0.416 (NSP) and 0.518 (SP), respectively, when only five models agreed. Mapping of the uncertainty of predictions in geomorphology can help scientists to improve the reliability of their data and modelling results. The predictive maps can be interpreted simultaneously with the uncertainty information, improving understanding of the potential pitfalls of the modelling.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cageo.2009.07.008</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0098-3004 |
ispartof | Computers & geosciences, 2010-03, Vol.36 (3), p.355-361 |
issn | 0098-3004 1873-7803 |
language | eng |
recordid | cdi_proquest_miscellaneous_1266739949 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Accuracy Earth sciences Earth, ocean, space Exact sciences and technology Geomorphology Landforms Mapping Mathematical models Modelling Patterned ground Periglacial Uncertainty |
title | Assessing spatial uncertainty in predictive geomorphological mapping: A multi-modelling approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A50%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20spatial%20uncertainty%20in%20predictive%20geomorphological%20mapping:%20A%20multi-modelling%20approach&rft.jtitle=Computers%20&%20geosciences&rft.au=Luoto,%20Miska&rft.date=2010-03-01&rft.volume=36&rft.issue=3&rft.spage=355&rft.epage=361&rft.pages=355-361&rft.issn=0098-3004&rft.eissn=1873-7803&rft_id=info:doi/10.1016/j.cageo.2009.07.008&rft_dat=%3Cproquest_cross%3E1266739949%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a389t-4e3fc111023465d77f4d8ea8cbb72441b55a99ba30c8c69efe40c05e978067cc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1266739949&rft_id=info:pmid/&rfr_iscdi=true |