Loading…

Modelling of hot carrier solar cell absorbers

Hot Carrier cells aim to tackle the carrier thermalisation loss after absorption of above band gap photons by separating and collecting carriers before they thermalise. Such slowing of carrier cooling may be achieved by modulation of the phonon decay mechanisms in nanostructures. 3D force constant m...

Full description

Saved in:
Bibliographic Details
Published in:Solar energy materials and solar cells 2010-09, Vol.94 (9), p.1516-1521
Main Authors: Conibeer, Gavin, Patterson, Robert, Huang, Lunmei, Guillemoles, Jean-Francois, Kőnig, Dirk, Shrestha, Santosh, Green, Martin A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c410t-9806cdd500b68ab0f3d277acd82693742676d872b9ee00c3dc226a49f45a3bac3
cites cdi_FETCH-LOGICAL-c410t-9806cdd500b68ab0f3d277acd82693742676d872b9ee00c3dc226a49f45a3bac3
container_end_page 1521
container_issue 9
container_start_page 1516
container_title Solar energy materials and solar cells
container_volume 94
creator Conibeer, Gavin
Patterson, Robert
Huang, Lunmei
Guillemoles, Jean-Francois
Kőnig, Dirk
Shrestha, Santosh
Green, Martin A.
description Hot Carrier cells aim to tackle the carrier thermalisation loss after absorption of above band gap photons by separating and collecting carriers before they thermalise. Such slowing of carrier cooling may be achieved by modulation of the phonon decay mechanisms in nanostructures. 3D force constant modelling of quantum dot nanostructures indicates that complete mini-gaps in the phonon dispersion can be achieved across reciprocal space for very small (1 nm) close packed quantum dots with a large mass difference between quantum dot (QD) and matrix. This work uses force constants from the literature for bulk materials. A 3D model using the more accurate ab-initio calculation of force constants indicates that only very small mini-gaps in reciprocal space exist for larger quantum dots with a small mass difference, although thus far the model has not been able to simulate these small, high mass difference, closely packed QD systems. For such small QD systems it is indicated that if correctly engineered the mini-gaps could prevent the major Klemens’-type decay mechanism of a longitudinal/transverse optical (LTO) phonon decaying to two longitudinal acoustic (LA) phonons of half the energy and equal and opposite momenta. As this is the primary decay mechanism of non-equilibrium ‘hot’ phonons emitted by hot electrons, its prevention can create a ‘hot phonon bottleneck’ which will re-heat the electron gas and thus slow the rate of carrier cooling.
doi_str_mv 10.1016/j.solmat.2010.01.018
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1266742634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927024810000334</els_id><sourcerecordid>1266742634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-9806cdd500b68ab0f3d277acd82693742676d872b9ee00c3dc226a49f45a3bac3</originalsourceid><addsrcrecordid>eNp9UEtLxDAQDqLguvoPPPQieGmdPJqkF0EWX7DiRc8hTVLN0m3WpCv4703p4lEYGJj5HjMfQpcYKgyY32yqFPqtHisCeQQ4lzxCCyxFU1LayGO0gIaIEgiTp-gspQ0AEE7ZApUvwbq-98NHEbriM4yF0TF6F4ssqWNh8rLQbQqxdTGdo5NO98ldHPoSvT_cv62eyvXr4_Pqbl0ahmEsGwncWFsDtFzqFjpqiRDaWEl4QwUjXHArBWkb5wAMtYYQrlnTsVrTVhu6RNez7i6Gr71Lo9r6NJ2iBxf2SWHC-SRDWYayGWpiSCm6Tu2i3-r4ozCoKR21UXM6akpHAc4lM-3q4KCT0X0X9WB8-uMSCqKWNc242xnn8rvfOReVjHeDcdZHZ0Zlg__f6BcS5ntR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1266742634</pqid></control><display><type>article</type><title>Modelling of hot carrier solar cell absorbers</title><source>Elsevier</source><creator>Conibeer, Gavin ; Patterson, Robert ; Huang, Lunmei ; Guillemoles, Jean-Francois ; Kőnig, Dirk ; Shrestha, Santosh ; Green, Martin A.</creator><creatorcontrib>Conibeer, Gavin ; Patterson, Robert ; Huang, Lunmei ; Guillemoles, Jean-Francois ; Kőnig, Dirk ; Shrestha, Santosh ; Green, Martin A.</creatorcontrib><description>Hot Carrier cells aim to tackle the carrier thermalisation loss after absorption of above band gap photons by separating and collecting carriers before they thermalise. Such slowing of carrier cooling may be achieved by modulation of the phonon decay mechanisms in nanostructures. 3D force constant modelling of quantum dot nanostructures indicates that complete mini-gaps in the phonon dispersion can be achieved across reciprocal space for very small (1 nm) close packed quantum dots with a large mass difference between quantum dot (QD) and matrix. This work uses force constants from the literature for bulk materials. A 3D model using the more accurate ab-initio calculation of force constants indicates that only very small mini-gaps in reciprocal space exist for larger quantum dots with a small mass difference, although thus far the model has not been able to simulate these small, high mass difference, closely packed QD systems. For such small QD systems it is indicated that if correctly engineered the mini-gaps could prevent the major Klemens’-type decay mechanism of a longitudinal/transverse optical (LTO) phonon decaying to two longitudinal acoustic (LA) phonons of half the energy and equal and opposite momenta. As this is the primary decay mechanism of non-equilibrium ‘hot’ phonons emitted by hot electrons, its prevention can create a ‘hot phonon bottleneck’ which will re-heat the electron gas and thus slow the rate of carrier cooling.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2010.01.018</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Carriers ; Decay ; Energy ; Exact sciences and technology ; Hot carriers ; Nanomaterials ; Nanostructure ; Natural energy ; Phonons ; Quantum dots ; Solar cells ; Solar collectors ; Solar energy ; Solar thermal conversion ; Three dimensional ; Vibronic modelling</subject><ispartof>Solar energy materials and solar cells, 2010-09, Vol.94 (9), p.1516-1521</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-9806cdd500b68ab0f3d277acd82693742676d872b9ee00c3dc226a49f45a3bac3</citedby><cites>FETCH-LOGICAL-c410t-9806cdd500b68ab0f3d277acd82693742676d872b9ee00c3dc226a49f45a3bac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23075853$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Conibeer, Gavin</creatorcontrib><creatorcontrib>Patterson, Robert</creatorcontrib><creatorcontrib>Huang, Lunmei</creatorcontrib><creatorcontrib>Guillemoles, Jean-Francois</creatorcontrib><creatorcontrib>Kőnig, Dirk</creatorcontrib><creatorcontrib>Shrestha, Santosh</creatorcontrib><creatorcontrib>Green, Martin A.</creatorcontrib><title>Modelling of hot carrier solar cell absorbers</title><title>Solar energy materials and solar cells</title><description>Hot Carrier cells aim to tackle the carrier thermalisation loss after absorption of above band gap photons by separating and collecting carriers before they thermalise. Such slowing of carrier cooling may be achieved by modulation of the phonon decay mechanisms in nanostructures. 3D force constant modelling of quantum dot nanostructures indicates that complete mini-gaps in the phonon dispersion can be achieved across reciprocal space for very small (1 nm) close packed quantum dots with a large mass difference between quantum dot (QD) and matrix. This work uses force constants from the literature for bulk materials. A 3D model using the more accurate ab-initio calculation of force constants indicates that only very small mini-gaps in reciprocal space exist for larger quantum dots with a small mass difference, although thus far the model has not been able to simulate these small, high mass difference, closely packed QD systems. For such small QD systems it is indicated that if correctly engineered the mini-gaps could prevent the major Klemens’-type decay mechanism of a longitudinal/transverse optical (LTO) phonon decaying to two longitudinal acoustic (LA) phonons of half the energy and equal and opposite momenta. As this is the primary decay mechanism of non-equilibrium ‘hot’ phonons emitted by hot electrons, its prevention can create a ‘hot phonon bottleneck’ which will re-heat the electron gas and thus slow the rate of carrier cooling.</description><subject>Applied sciences</subject><subject>Carriers</subject><subject>Decay</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Hot carriers</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Natural energy</subject><subject>Phonons</subject><subject>Quantum dots</subject><subject>Solar cells</subject><subject>Solar collectors</subject><subject>Solar energy</subject><subject>Solar thermal conversion</subject><subject>Three dimensional</subject><subject>Vibronic modelling</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9UEtLxDAQDqLguvoPPPQieGmdPJqkF0EWX7DiRc8hTVLN0m3WpCv4703p4lEYGJj5HjMfQpcYKgyY32yqFPqtHisCeQQ4lzxCCyxFU1LayGO0gIaIEgiTp-gspQ0AEE7ZApUvwbq-98NHEbriM4yF0TF6F4ssqWNh8rLQbQqxdTGdo5NO98ldHPoSvT_cv62eyvXr4_Pqbl0ahmEsGwncWFsDtFzqFjpqiRDaWEl4QwUjXHArBWkb5wAMtYYQrlnTsVrTVhu6RNez7i6Gr71Lo9r6NJ2iBxf2SWHC-SRDWYayGWpiSCm6Tu2i3-r4ozCoKR21UXM6akpHAc4lM-3q4KCT0X0X9WB8-uMSCqKWNc242xnn8rvfOReVjHeDcdZHZ0Zlg__f6BcS5ntR</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Conibeer, Gavin</creator><creator>Patterson, Robert</creator><creator>Huang, Lunmei</creator><creator>Guillemoles, Jean-Francois</creator><creator>Kőnig, Dirk</creator><creator>Shrestha, Santosh</creator><creator>Green, Martin A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20100901</creationdate><title>Modelling of hot carrier solar cell absorbers</title><author>Conibeer, Gavin ; Patterson, Robert ; Huang, Lunmei ; Guillemoles, Jean-Francois ; Kőnig, Dirk ; Shrestha, Santosh ; Green, Martin A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-9806cdd500b68ab0f3d277acd82693742676d872b9ee00c3dc226a49f45a3bac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Carriers</topic><topic>Decay</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Hot carriers</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Natural energy</topic><topic>Phonons</topic><topic>Quantum dots</topic><topic>Solar cells</topic><topic>Solar collectors</topic><topic>Solar energy</topic><topic>Solar thermal conversion</topic><topic>Three dimensional</topic><topic>Vibronic modelling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Conibeer, Gavin</creatorcontrib><creatorcontrib>Patterson, Robert</creatorcontrib><creatorcontrib>Huang, Lunmei</creatorcontrib><creatorcontrib>Guillemoles, Jean-Francois</creatorcontrib><creatorcontrib>Kőnig, Dirk</creatorcontrib><creatorcontrib>Shrestha, Santosh</creatorcontrib><creatorcontrib>Green, Martin A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Conibeer, Gavin</au><au>Patterson, Robert</au><au>Huang, Lunmei</au><au>Guillemoles, Jean-Francois</au><au>Kőnig, Dirk</au><au>Shrestha, Santosh</au><au>Green, Martin A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling of hot carrier solar cell absorbers</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2010-09-01</date><risdate>2010</risdate><volume>94</volume><issue>9</issue><spage>1516</spage><epage>1521</epage><pages>1516-1521</pages><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>Hot Carrier cells aim to tackle the carrier thermalisation loss after absorption of above band gap photons by separating and collecting carriers before they thermalise. Such slowing of carrier cooling may be achieved by modulation of the phonon decay mechanisms in nanostructures. 3D force constant modelling of quantum dot nanostructures indicates that complete mini-gaps in the phonon dispersion can be achieved across reciprocal space for very small (1 nm) close packed quantum dots with a large mass difference between quantum dot (QD) and matrix. This work uses force constants from the literature for bulk materials. A 3D model using the more accurate ab-initio calculation of force constants indicates that only very small mini-gaps in reciprocal space exist for larger quantum dots with a small mass difference, although thus far the model has not been able to simulate these small, high mass difference, closely packed QD systems. For such small QD systems it is indicated that if correctly engineered the mini-gaps could prevent the major Klemens’-type decay mechanism of a longitudinal/transverse optical (LTO) phonon decaying to two longitudinal acoustic (LA) phonons of half the energy and equal and opposite momenta. As this is the primary decay mechanism of non-equilibrium ‘hot’ phonons emitted by hot electrons, its prevention can create a ‘hot phonon bottleneck’ which will re-heat the electron gas and thus slow the rate of carrier cooling.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.solmat.2010.01.018</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0927-0248
ispartof Solar energy materials and solar cells, 2010-09, Vol.94 (9), p.1516-1521
issn 0927-0248
1879-3398
language eng
recordid cdi_proquest_miscellaneous_1266742634
source Elsevier
subjects Applied sciences
Carriers
Decay
Energy
Exact sciences and technology
Hot carriers
Nanomaterials
Nanostructure
Natural energy
Phonons
Quantum dots
Solar cells
Solar collectors
Solar energy
Solar thermal conversion
Three dimensional
Vibronic modelling
title Modelling of hot carrier solar cell absorbers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A28%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20of%20hot%20carrier%20solar%20cell%20absorbers&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=Conibeer,%20Gavin&rft.date=2010-09-01&rft.volume=94&rft.issue=9&rft.spage=1516&rft.epage=1521&rft.pages=1516-1521&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2010.01.018&rft_dat=%3Cproquest_cross%3E1266742634%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c410t-9806cdd500b68ab0f3d277acd82693742676d872b9ee00c3dc226a49f45a3bac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1266742634&rft_id=info:pmid/&rfr_iscdi=true