Loading…

Peculiarities of live cells' interaction with micro- and nanoparticles

Experimental evidence collected more than 20 years ago in different laboratories suggests that the interactions between live biological cells and micro- and nanoparticles depend on their metabolic state. These experiments were conducted by reputable groups, led by prominent leaders such as H. Pohl o...

Full description

Saved in:
Bibliographic Details
Published in:Advances in colloid and interface science 2010-08, Vol.159 (1), p.60-71
Main Authors: Dukhin, A.S., Ulberg, Z.R., Karamushka, V.I., Gruzina, T.G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Experimental evidence collected more than 20 years ago in different laboratories suggests that the interactions between live biological cells and micro- and nanoparticles depend on their metabolic state. These experiments were conducted by reputable groups, led by prominent leaders such as H. Pohl of the USA, who was the inventor of dielectrophoresis, and B. Derjaguin of the Soviet Union who was the leading author of DLVO theory. The experiments had been mostly conducted with microparticles in the early 1980s. In the early 1990s, Ukrainian researchers showed that the interaction of live cells with gold nanoparticles consisted of an initial reversible step that also depended on cell metabolism. They found indirect evidence that the ion pumps of the cells were responsible for the reversible step. Ion pumps generate a transmembrane potential, a measurable and widely-used characteristic of the cell's energetic state. The transmembrane potential, in turn, strongly affects the ζ-potential, as was experimentally discovered 40 years ago by several independent groups using cell electrophoresis. This relationship should be taken into account when DLVO theory is considered as the basis for describing the interactions between live cells and micro- and nanoparticles. Unfortunately, detail theoretical analysis indicates that such modification would not be sufficient for explaining observed peculiarities mentioned above. That is why distinguished theoreticians such as Pohl, Frohlich, Derjaguin and others have suggested three theoretical models, presumably to explain these experiments. These theoretical models should be considered to be complementary to the well-established concepts developed on this subject in the molecular biology of cells and cell adhesion. This paper is not a revision of the existing models. It is an overview of the old and forgotten experimental data and discussion of the suggested theoretical models. The unusual interaction mechanisms are only specific for live biological cells and serve a dual role: either as a first barrier to protect the cell from potentially damaging, dispersed particulates, or as a means of accumulating useful substances. Both functions are critical for the modern problem of nanotoxicology.
ISSN:0001-8686
1873-3727
DOI:10.1016/j.cis.2010.05.004