Loading…
The dependence of barrier height on temperature for Pd Schottky contacts on ZnO
Temperature dependent current–voltage ( I– V) and capacitance–voltage ( C– V) measurements have been performed on Pd/ZnO Schottky barrier diodes in the range 60–300 K. The room temperature values for the zero bias barrier height from the I– V measurements ( Φ I–V ) was found to be 0.52 eV and from t...
Saved in:
Published in: | Physica. B, Condensed matter Condensed matter, 2009-12, Vol.404 (22), p.4402-4405 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c411t-4df98ecbabe40fb96128511cef93718a03ba00911b91514676764cb21a222a253 |
---|---|
cites | cdi_FETCH-LOGICAL-c411t-4df98ecbabe40fb96128511cef93718a03ba00911b91514676764cb21a222a253 |
container_end_page | 4405 |
container_issue | 22 |
container_start_page | 4402 |
container_title | Physica. B, Condensed matter |
container_volume | 404 |
creator | Mtangi, W. Auret, F.D. Nyamhere, C. Janse van Rensburg, P.J. Chawanda, A. Diale, M. Nel, J.M. Meyer, W.E. |
description | Temperature dependent current–voltage (
I–
V) and capacitance–voltage (
C–
V) measurements have been performed on Pd/ZnO Schottky barrier diodes in the range 60–300
K. The room temperature values for the zero bias barrier height from the
I–
V measurements (
Φ
I–V
) was found to be 0.52
eV and from the
C–V measurements (
Φ
C–V
) as 3.83
eV. From the temperature dependence of forward bias
I–V, the barrier height was observed to increase with temperature, a trend that disagrees with the negative temperature coefficient for semiconductor material. The
C–V barrier height decreases with temperature, a trend that is in agreement with the negative temperature coefficient of semiconductor material. This has enabled us to fit two curves in two regions (60–120
K and 140–300
K). We have attributed this behaviour to a defect observed by DLTS with energy level 0.31
eV below the conduction band and defect concentration of between 4×10
16 and 6×10
16
cm
−3 that traps carriers, influencing the determination of the barrier height. |
doi_str_mv | 10.1016/j.physb.2009.09.022 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1266754031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921452609010977</els_id><sourcerecordid>1266754031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-4df98ecbabe40fb96128511cef93718a03ba00911b91514676764cb21a222a253</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEmPwC7jkgsSlJU6_DxzQxJc0aUiMC5coTR2asTUlyZD272nZxBHbki-v_doPIZfAYmCQ36zivt35OuaMVfFYnB-RCZRFEnFIsmMyYRWHKM14fkrOvF-xIaCACVksW6QN9tg12CmkVtNaOmfQ0RbNRxuo7WjATY9Ohq1Dqq2jLw19Va0N4XNHle2CVMGPuvducU5OtFx7vDj0KXl7uF_OnqL54vF5djePVAoQorTRVYmqljWmTNdVDrzMABTqKimglCyp5fALQF1BBmleDJmqmoPknEueJVNyvd_bO_u1RR_ExniF67Xs0G69AJ7nRZayBAZpspcqZ713qEXvzEa6nQAmRnxiJX7xiRGfGIvzYerqYCC9kmvtZKeM_xsdzihZWYyH3O51OHz7PXATXpkRZWMcqiAaa_71-QFglYW4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1266754031</pqid></control><display><type>article</type><title>The dependence of barrier height on temperature for Pd Schottky contacts on ZnO</title><source>Elsevier</source><creator>Mtangi, W. ; Auret, F.D. ; Nyamhere, C. ; Janse van Rensburg, P.J. ; Chawanda, A. ; Diale, M. ; Nel, J.M. ; Meyer, W.E.</creator><creatorcontrib>Mtangi, W. ; Auret, F.D. ; Nyamhere, C. ; Janse van Rensburg, P.J. ; Chawanda, A. ; Diale, M. ; Nel, J.M. ; Meyer, W.E.</creatorcontrib><description>Temperature dependent current–voltage (
I–
V) and capacitance–voltage (
C–
V) measurements have been performed on Pd/ZnO Schottky barrier diodes in the range 60–300
K. The room temperature values for the zero bias barrier height from the
I–
V measurements (
Φ
I–V
) was found to be 0.52
eV and from the
C–V measurements (
Φ
C–V
) as 3.83
eV. From the temperature dependence of forward bias
I–V, the barrier height was observed to increase with temperature, a trend that disagrees with the negative temperature coefficient for semiconductor material. The
C–V barrier height decreases with temperature, a trend that is in agreement with the negative temperature coefficient of semiconductor material. This has enabled us to fit two curves in two regions (60–120
K and 140–300
K). We have attributed this behaviour to a defect observed by DLTS with energy level 0.31
eV below the conduction band and defect concentration of between 4×10
16 and 6×10
16
cm
−3 that traps carriers, influencing the determination of the barrier height.</description><identifier>ISSN: 0921-4526</identifier><identifier>EISSN: 1873-2135</identifier><identifier>DOI: 10.1016/j.physb.2009.09.022</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Barrier height ; Barriers ; Bias ; Capacitance ; Condensed matter ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; DLTS ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Exact sciences and technology ; Negative temperature coefficient ; Palladium ; Physics ; Semiconductor materials ; Surface double layers, schottky barriers, and work functions ; Traps ; Trends ; Zinc oxide</subject><ispartof>Physica. B, Condensed matter, 2009-12, Vol.404 (22), p.4402-4405</ispartof><rights>2009 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-4df98ecbabe40fb96128511cef93718a03ba00911b91514676764cb21a222a253</citedby><cites>FETCH-LOGICAL-c411t-4df98ecbabe40fb96128511cef93718a03ba00911b91514676764cb21a222a253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23910,23911,25119,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22280875$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mtangi, W.</creatorcontrib><creatorcontrib>Auret, F.D.</creatorcontrib><creatorcontrib>Nyamhere, C.</creatorcontrib><creatorcontrib>Janse van Rensburg, P.J.</creatorcontrib><creatorcontrib>Chawanda, A.</creatorcontrib><creatorcontrib>Diale, M.</creatorcontrib><creatorcontrib>Nel, J.M.</creatorcontrib><creatorcontrib>Meyer, W.E.</creatorcontrib><title>The dependence of barrier height on temperature for Pd Schottky contacts on ZnO</title><title>Physica. B, Condensed matter</title><description>Temperature dependent current–voltage (
I–
V) and capacitance–voltage (
C–
V) measurements have been performed on Pd/ZnO Schottky barrier diodes in the range 60–300
K. The room temperature values for the zero bias barrier height from the
I–
V measurements (
Φ
I–V
) was found to be 0.52
eV and from the
C–V measurements (
Φ
C–V
) as 3.83
eV. From the temperature dependence of forward bias
I–V, the barrier height was observed to increase with temperature, a trend that disagrees with the negative temperature coefficient for semiconductor material. The
C–V barrier height decreases with temperature, a trend that is in agreement with the negative temperature coefficient of semiconductor material. This has enabled us to fit two curves in two regions (60–120
K and 140–300
K). We have attributed this behaviour to a defect observed by DLTS with energy level 0.31
eV below the conduction band and defect concentration of between 4×10
16 and 6×10
16
cm
−3 that traps carriers, influencing the determination of the barrier height.</description><subject>Barrier height</subject><subject>Barriers</subject><subject>Bias</subject><subject>Capacitance</subject><subject>Condensed matter</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>DLTS</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Exact sciences and technology</subject><subject>Negative temperature coefficient</subject><subject>Palladium</subject><subject>Physics</subject><subject>Semiconductor materials</subject><subject>Surface double layers, schottky barriers, and work functions</subject><subject>Traps</subject><subject>Trends</subject><subject>Zinc oxide</subject><issn>0921-4526</issn><issn>1873-2135</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEEmPwC7jkgsSlJU6_DxzQxJc0aUiMC5coTR2asTUlyZD272nZxBHbki-v_doPIZfAYmCQ36zivt35OuaMVfFYnB-RCZRFEnFIsmMyYRWHKM14fkrOvF-xIaCACVksW6QN9tg12CmkVtNaOmfQ0RbNRxuo7WjATY9Ohq1Dqq2jLw19Va0N4XNHle2CVMGPuvducU5OtFx7vDj0KXl7uF_OnqL54vF5djePVAoQorTRVYmqljWmTNdVDrzMABTqKimglCyp5fALQF1BBmleDJmqmoPknEueJVNyvd_bO_u1RR_ExniF67Xs0G69AJ7nRZayBAZpspcqZ713qEXvzEa6nQAmRnxiJX7xiRGfGIvzYerqYCC9kmvtZKeM_xsdzihZWYyH3O51OHz7PXATXpkRZWMcqiAaa_71-QFglYW4</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>Mtangi, W.</creator><creator>Auret, F.D.</creator><creator>Nyamhere, C.</creator><creator>Janse van Rensburg, P.J.</creator><creator>Chawanda, A.</creator><creator>Diale, M.</creator><creator>Nel, J.M.</creator><creator>Meyer, W.E.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20091201</creationdate><title>The dependence of barrier height on temperature for Pd Schottky contacts on ZnO</title><author>Mtangi, W. ; Auret, F.D. ; Nyamhere, C. ; Janse van Rensburg, P.J. ; Chawanda, A. ; Diale, M. ; Nel, J.M. ; Meyer, W.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-4df98ecbabe40fb96128511cef93718a03ba00911b91514676764cb21a222a253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Barrier height</topic><topic>Barriers</topic><topic>Bias</topic><topic>Capacitance</topic><topic>Condensed matter</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>DLTS</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Exact sciences and technology</topic><topic>Negative temperature coefficient</topic><topic>Palladium</topic><topic>Physics</topic><topic>Semiconductor materials</topic><topic>Surface double layers, schottky barriers, and work functions</topic><topic>Traps</topic><topic>Trends</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mtangi, W.</creatorcontrib><creatorcontrib>Auret, F.D.</creatorcontrib><creatorcontrib>Nyamhere, C.</creatorcontrib><creatorcontrib>Janse van Rensburg, P.J.</creatorcontrib><creatorcontrib>Chawanda, A.</creatorcontrib><creatorcontrib>Diale, M.</creatorcontrib><creatorcontrib>Nel, J.M.</creatorcontrib><creatorcontrib>Meyer, W.E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica. B, Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mtangi, W.</au><au>Auret, F.D.</au><au>Nyamhere, C.</au><au>Janse van Rensburg, P.J.</au><au>Chawanda, A.</au><au>Diale, M.</au><au>Nel, J.M.</au><au>Meyer, W.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The dependence of barrier height on temperature for Pd Schottky contacts on ZnO</atitle><jtitle>Physica. B, Condensed matter</jtitle><date>2009-12-01</date><risdate>2009</risdate><volume>404</volume><issue>22</issue><spage>4402</spage><epage>4405</epage><pages>4402-4405</pages><issn>0921-4526</issn><eissn>1873-2135</eissn><abstract>Temperature dependent current–voltage (
I–
V) and capacitance–voltage (
C–
V) measurements have been performed on Pd/ZnO Schottky barrier diodes in the range 60–300
K. The room temperature values for the zero bias barrier height from the
I–
V measurements (
Φ
I–V
) was found to be 0.52
eV and from the
C–V measurements (
Φ
C–V
) as 3.83
eV. From the temperature dependence of forward bias
I–V, the barrier height was observed to increase with temperature, a trend that disagrees with the negative temperature coefficient for semiconductor material. The
C–V barrier height decreases with temperature, a trend that is in agreement with the negative temperature coefficient of semiconductor material. This has enabled us to fit two curves in two regions (60–120
K and 140–300
K). We have attributed this behaviour to a defect observed by DLTS with energy level 0.31
eV below the conduction band and defect concentration of between 4×10
16 and 6×10
16
cm
−3 that traps carriers, influencing the determination of the barrier height.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.physb.2009.09.022</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-4526 |
ispartof | Physica. B, Condensed matter, 2009-12, Vol.404 (22), p.4402-4405 |
issn | 0921-4526 1873-2135 |
language | eng |
recordid | cdi_proquest_miscellaneous_1266754031 |
source | Elsevier |
subjects | Barrier height Barriers Bias Capacitance Condensed matter Condensed matter: electronic structure, electrical, magnetic, and optical properties DLTS Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures Exact sciences and technology Negative temperature coefficient Palladium Physics Semiconductor materials Surface double layers, schottky barriers, and work functions Traps Trends Zinc oxide |
title | The dependence of barrier height on temperature for Pd Schottky contacts on ZnO |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A02%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20dependence%20of%20barrier%20height%20on%20temperature%20for%20Pd%20Schottky%20contacts%20on%20ZnO&rft.jtitle=Physica.%20B,%20Condensed%20matter&rft.au=Mtangi,%20W.&rft.date=2009-12-01&rft.volume=404&rft.issue=22&rft.spage=4402&rft.epage=4405&rft.pages=4402-4405&rft.issn=0921-4526&rft.eissn=1873-2135&rft_id=info:doi/10.1016/j.physb.2009.09.022&rft_dat=%3Cproquest_cross%3E1266754031%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c411t-4df98ecbabe40fb96128511cef93718a03ba00911b91514676764cb21a222a253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1266754031&rft_id=info:pmid/&rfr_iscdi=true |