Loading…

The dependence of barrier height on temperature for Pd Schottky contacts on ZnO

Temperature dependent current–voltage ( I– V) and capacitance–voltage ( C– V) measurements have been performed on Pd/ZnO Schottky barrier diodes in the range 60–300 K. The room temperature values for the zero bias barrier height from the I– V measurements ( Φ I–V ) was found to be 0.52 eV and from t...

Full description

Saved in:
Bibliographic Details
Published in:Physica. B, Condensed matter Condensed matter, 2009-12, Vol.404 (22), p.4402-4405
Main Authors: Mtangi, W., Auret, F.D., Nyamhere, C., Janse van Rensburg, P.J., Chawanda, A., Diale, M., Nel, J.M., Meyer, W.E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c411t-4df98ecbabe40fb96128511cef93718a03ba00911b91514676764cb21a222a253
cites cdi_FETCH-LOGICAL-c411t-4df98ecbabe40fb96128511cef93718a03ba00911b91514676764cb21a222a253
container_end_page 4405
container_issue 22
container_start_page 4402
container_title Physica. B, Condensed matter
container_volume 404
creator Mtangi, W.
Auret, F.D.
Nyamhere, C.
Janse van Rensburg, P.J.
Chawanda, A.
Diale, M.
Nel, J.M.
Meyer, W.E.
description Temperature dependent current–voltage ( I– V) and capacitance–voltage ( C– V) measurements have been performed on Pd/ZnO Schottky barrier diodes in the range 60–300 K. The room temperature values for the zero bias barrier height from the I– V measurements ( Φ I–V ) was found to be 0.52 eV and from the C–V measurements ( Φ C–V ) as 3.83 eV. From the temperature dependence of forward bias I–V, the barrier height was observed to increase with temperature, a trend that disagrees with the negative temperature coefficient for semiconductor material. The C–V barrier height decreases with temperature, a trend that is in agreement with the negative temperature coefficient of semiconductor material. This has enabled us to fit two curves in two regions (60–120 K and 140–300 K). We have attributed this behaviour to a defect observed by DLTS with energy level 0.31 eV below the conduction band and defect concentration of between 4×10 16 and 6×10 16 cm −3 that traps carriers, influencing the determination of the barrier height.
doi_str_mv 10.1016/j.physb.2009.09.022
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1266754031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921452609010977</els_id><sourcerecordid>1266754031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-4df98ecbabe40fb96128511cef93718a03ba00911b91514676764cb21a222a253</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEmPwC7jkgsSlJU6_DxzQxJc0aUiMC5coTR2asTUlyZD272nZxBHbki-v_doPIZfAYmCQ36zivt35OuaMVfFYnB-RCZRFEnFIsmMyYRWHKM14fkrOvF-xIaCACVksW6QN9tg12CmkVtNaOmfQ0RbNRxuo7WjATY9Ohq1Dqq2jLw19Va0N4XNHle2CVMGPuvducU5OtFx7vDj0KXl7uF_OnqL54vF5djePVAoQorTRVYmqljWmTNdVDrzMABTqKimglCyp5fALQF1BBmleDJmqmoPknEueJVNyvd_bO_u1RR_ExniF67Xs0G69AJ7nRZayBAZpspcqZ713qEXvzEa6nQAmRnxiJX7xiRGfGIvzYerqYCC9kmvtZKeM_xsdzihZWYyH3O51OHz7PXATXpkRZWMcqiAaa_71-QFglYW4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1266754031</pqid></control><display><type>article</type><title>The dependence of barrier height on temperature for Pd Schottky contacts on ZnO</title><source>Elsevier</source><creator>Mtangi, W. ; Auret, F.D. ; Nyamhere, C. ; Janse van Rensburg, P.J. ; Chawanda, A. ; Diale, M. ; Nel, J.M. ; Meyer, W.E.</creator><creatorcontrib>Mtangi, W. ; Auret, F.D. ; Nyamhere, C. ; Janse van Rensburg, P.J. ; Chawanda, A. ; Diale, M. ; Nel, J.M. ; Meyer, W.E.</creatorcontrib><description>Temperature dependent current–voltage ( I– V) and capacitance–voltage ( C– V) measurements have been performed on Pd/ZnO Schottky barrier diodes in the range 60–300 K. The room temperature values for the zero bias barrier height from the I– V measurements ( Φ I–V ) was found to be 0.52 eV and from the C–V measurements ( Φ C–V ) as 3.83 eV. From the temperature dependence of forward bias I–V, the barrier height was observed to increase with temperature, a trend that disagrees with the negative temperature coefficient for semiconductor material. The C–V barrier height decreases with temperature, a trend that is in agreement with the negative temperature coefficient of semiconductor material. This has enabled us to fit two curves in two regions (60–120 K and 140–300 K). We have attributed this behaviour to a defect observed by DLTS with energy level 0.31 eV below the conduction band and defect concentration of between 4×10 16 and 6×10 16 cm −3 that traps carriers, influencing the determination of the barrier height.</description><identifier>ISSN: 0921-4526</identifier><identifier>EISSN: 1873-2135</identifier><identifier>DOI: 10.1016/j.physb.2009.09.022</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Barrier height ; Barriers ; Bias ; Capacitance ; Condensed matter ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; DLTS ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Exact sciences and technology ; Negative temperature coefficient ; Palladium ; Physics ; Semiconductor materials ; Surface double layers, schottky barriers, and work functions ; Traps ; Trends ; Zinc oxide</subject><ispartof>Physica. B, Condensed matter, 2009-12, Vol.404 (22), p.4402-4405</ispartof><rights>2009 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-4df98ecbabe40fb96128511cef93718a03ba00911b91514676764cb21a222a253</citedby><cites>FETCH-LOGICAL-c411t-4df98ecbabe40fb96128511cef93718a03ba00911b91514676764cb21a222a253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23910,23911,25119,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22280875$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mtangi, W.</creatorcontrib><creatorcontrib>Auret, F.D.</creatorcontrib><creatorcontrib>Nyamhere, C.</creatorcontrib><creatorcontrib>Janse van Rensburg, P.J.</creatorcontrib><creatorcontrib>Chawanda, A.</creatorcontrib><creatorcontrib>Diale, M.</creatorcontrib><creatorcontrib>Nel, J.M.</creatorcontrib><creatorcontrib>Meyer, W.E.</creatorcontrib><title>The dependence of barrier height on temperature for Pd Schottky contacts on ZnO</title><title>Physica. B, Condensed matter</title><description>Temperature dependent current–voltage ( I– V) and capacitance–voltage ( C– V) measurements have been performed on Pd/ZnO Schottky barrier diodes in the range 60–300 K. The room temperature values for the zero bias barrier height from the I– V measurements ( Φ I–V ) was found to be 0.52 eV and from the C–V measurements ( Φ C–V ) as 3.83 eV. From the temperature dependence of forward bias I–V, the barrier height was observed to increase with temperature, a trend that disagrees with the negative temperature coefficient for semiconductor material. The C–V barrier height decreases with temperature, a trend that is in agreement with the negative temperature coefficient of semiconductor material. This has enabled us to fit two curves in two regions (60–120 K and 140–300 K). We have attributed this behaviour to a defect observed by DLTS with energy level 0.31 eV below the conduction band and defect concentration of between 4×10 16 and 6×10 16 cm −3 that traps carriers, influencing the determination of the barrier height.</description><subject>Barrier height</subject><subject>Barriers</subject><subject>Bias</subject><subject>Capacitance</subject><subject>Condensed matter</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>DLTS</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Exact sciences and technology</subject><subject>Negative temperature coefficient</subject><subject>Palladium</subject><subject>Physics</subject><subject>Semiconductor materials</subject><subject>Surface double layers, schottky barriers, and work functions</subject><subject>Traps</subject><subject>Trends</subject><subject>Zinc oxide</subject><issn>0921-4526</issn><issn>1873-2135</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEEmPwC7jkgsSlJU6_DxzQxJc0aUiMC5coTR2asTUlyZD272nZxBHbki-v_doPIZfAYmCQ36zivt35OuaMVfFYnB-RCZRFEnFIsmMyYRWHKM14fkrOvF-xIaCACVksW6QN9tg12CmkVtNaOmfQ0RbNRxuo7WjATY9Ohq1Dqq2jLw19Va0N4XNHle2CVMGPuvducU5OtFx7vDj0KXl7uF_OnqL54vF5djePVAoQorTRVYmqljWmTNdVDrzMABTqKimglCyp5fALQF1BBmleDJmqmoPknEueJVNyvd_bO_u1RR_ExniF67Xs0G69AJ7nRZayBAZpspcqZ713qEXvzEa6nQAmRnxiJX7xiRGfGIvzYerqYCC9kmvtZKeM_xsdzihZWYyH3O51OHz7PXATXpkRZWMcqiAaa_71-QFglYW4</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>Mtangi, W.</creator><creator>Auret, F.D.</creator><creator>Nyamhere, C.</creator><creator>Janse van Rensburg, P.J.</creator><creator>Chawanda, A.</creator><creator>Diale, M.</creator><creator>Nel, J.M.</creator><creator>Meyer, W.E.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20091201</creationdate><title>The dependence of barrier height on temperature for Pd Schottky contacts on ZnO</title><author>Mtangi, W. ; Auret, F.D. ; Nyamhere, C. ; Janse van Rensburg, P.J. ; Chawanda, A. ; Diale, M. ; Nel, J.M. ; Meyer, W.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-4df98ecbabe40fb96128511cef93718a03ba00911b91514676764cb21a222a253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Barrier height</topic><topic>Barriers</topic><topic>Bias</topic><topic>Capacitance</topic><topic>Condensed matter</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>DLTS</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Exact sciences and technology</topic><topic>Negative temperature coefficient</topic><topic>Palladium</topic><topic>Physics</topic><topic>Semiconductor materials</topic><topic>Surface double layers, schottky barriers, and work functions</topic><topic>Traps</topic><topic>Trends</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mtangi, W.</creatorcontrib><creatorcontrib>Auret, F.D.</creatorcontrib><creatorcontrib>Nyamhere, C.</creatorcontrib><creatorcontrib>Janse van Rensburg, P.J.</creatorcontrib><creatorcontrib>Chawanda, A.</creatorcontrib><creatorcontrib>Diale, M.</creatorcontrib><creatorcontrib>Nel, J.M.</creatorcontrib><creatorcontrib>Meyer, W.E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica. B, Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mtangi, W.</au><au>Auret, F.D.</au><au>Nyamhere, C.</au><au>Janse van Rensburg, P.J.</au><au>Chawanda, A.</au><au>Diale, M.</au><au>Nel, J.M.</au><au>Meyer, W.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The dependence of barrier height on temperature for Pd Schottky contacts on ZnO</atitle><jtitle>Physica. B, Condensed matter</jtitle><date>2009-12-01</date><risdate>2009</risdate><volume>404</volume><issue>22</issue><spage>4402</spage><epage>4405</epage><pages>4402-4405</pages><issn>0921-4526</issn><eissn>1873-2135</eissn><abstract>Temperature dependent current–voltage ( I– V) and capacitance–voltage ( C– V) measurements have been performed on Pd/ZnO Schottky barrier diodes in the range 60–300 K. The room temperature values for the zero bias barrier height from the I– V measurements ( Φ I–V ) was found to be 0.52 eV and from the C–V measurements ( Φ C–V ) as 3.83 eV. From the temperature dependence of forward bias I–V, the barrier height was observed to increase with temperature, a trend that disagrees with the negative temperature coefficient for semiconductor material. The C–V barrier height decreases with temperature, a trend that is in agreement with the negative temperature coefficient of semiconductor material. This has enabled us to fit two curves in two regions (60–120 K and 140–300 K). We have attributed this behaviour to a defect observed by DLTS with energy level 0.31 eV below the conduction band and defect concentration of between 4×10 16 and 6×10 16 cm −3 that traps carriers, influencing the determination of the barrier height.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.physb.2009.09.022</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0921-4526
ispartof Physica. B, Condensed matter, 2009-12, Vol.404 (22), p.4402-4405
issn 0921-4526
1873-2135
language eng
recordid cdi_proquest_miscellaneous_1266754031
source Elsevier
subjects Barrier height
Barriers
Bias
Capacitance
Condensed matter
Condensed matter: electronic structure, electrical, magnetic, and optical properties
DLTS
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Exact sciences and technology
Negative temperature coefficient
Palladium
Physics
Semiconductor materials
Surface double layers, schottky barriers, and work functions
Traps
Trends
Zinc oxide
title The dependence of barrier height on temperature for Pd Schottky contacts on ZnO
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A02%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20dependence%20of%20barrier%20height%20on%20temperature%20for%20Pd%20Schottky%20contacts%20on%20ZnO&rft.jtitle=Physica.%20B,%20Condensed%20matter&rft.au=Mtangi,%20W.&rft.date=2009-12-01&rft.volume=404&rft.issue=22&rft.spage=4402&rft.epage=4405&rft.pages=4402-4405&rft.issn=0921-4526&rft.eissn=1873-2135&rft_id=info:doi/10.1016/j.physb.2009.09.022&rft_dat=%3Cproquest_cross%3E1266754031%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c411t-4df98ecbabe40fb96128511cef93718a03ba00911b91514676764cb21a222a253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1266754031&rft_id=info:pmid/&rfr_iscdi=true