Loading…

Investigating the Use of a Genesis Potential Index for Tropical Cyclones in the North Atlantic Basin

Large-scale environmental variables known to be linked to the formation of tropical cyclones have previously been used to develop empirical indices as proxies for assessing cyclone frequency from large-scale analyses or model simulations. Here the authors examine the ability of two recent indices, t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of climate 2012-12, Vol.25 (24), p.8611-8626
Main Authors: Bruyère, Cindy L., Holland, Greg J., Towler, Erin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Large-scale environmental variables known to be linked to the formation of tropical cyclones have previously been used to develop empirical indices as proxies for assessing cyclone frequency from large-scale analyses or model simulations. Here the authors examine the ability of two recent indices, the genesis potential (GP) and the genesis potential index, to reproduce observed North Atlantic cyclone annual frequency variations and trends. These skillfully estimate the mean seasonal variation of observed cyclones, but they struggle with reproducing interannual frequency variability and change. Examination of the independent contributions by the four terms that make up the indices finds that potential intensity and shear have significant skill, while moisture and vorticity either do not contribute to or degrade the indices’ capacity to reproduce observed interannual variability. It is also found that for assessing basinwide cyclone frequency, averaging indices over the whole basin is less skillful than its application to the general area off the coast of Africa broadly covering the main development region (MDR). These results point to a revised index, the cyclone genesis index (CGI), which comprises only potential intensity and vertical shear. Application of the CGI averaged over the MDR demonstrates high and significant skill at reproducing interannual variations and trends in all-basin cyclones across both reanalyses. The CGI also provides a more accurate reproduction of seasonal variations than the original GP. Future work applying the CGI to other tropical cyclone basins and to the downscaling of relatively course climate simulations is briefly addressed.
ISSN:0894-8755
1520-0442
DOI:10.1175/JCLI-D-11-00619.1