Loading…

CMIP5 multimodel ensemble projection of storm track change under global warming

CMIP5 multimodel ensemble projection of midlatitude storm track changes has been examined. Storm track activity is quantified by temporal variance of meridional wind and sea level pressure (psl), as well as cyclone track statistics. For the Southern Hemisphere (SH), CMIP5 models project clear polewa...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Geophysical Research: Atmospheres 2012-12, Vol.117 (D23), p.n/a
Main Authors: Chang, Edmund K. M., Guo, Yanjuan, Xia, Xiaoming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:CMIP5 multimodel ensemble projection of midlatitude storm track changes has been examined. Storm track activity is quantified by temporal variance of meridional wind and sea level pressure (psl), as well as cyclone track statistics. For the Southern Hemisphere (SH), CMIP5 models project clear poleward migration, upward expansion, and intensification of the storm track. For the Northern Hemisphere (NH), the models also project some poleward shift and upward expansion of the storm track in the upper troposphere/lower stratosphere, but mainly weakening of the storm track toward its equatorward flank in the troposphere. Consistent with these, CMIP5 models project significant increase in the frequency of extreme cyclones during the SH cool season, but significant decrease in such events in the NH. Comparisons with CMIP3 projections indicate high degrees of consistency for SH projections, but significant differences are found in the NH. Overall, CMIP5 models project larger decrease in storm track activity in the NH troposphere, especially over North America in winter, where psl variance as well as cyclone frequency and amplitude are all projected to decrease significantly. In terms of climatology, similar to CMIP3, most CMIP5 models simulate storm tracks that are too weak and display equatorward biases in their latitude. These biases have also been related to future projections. In the NH, the strength of a model's climatological storm track is negatively correlated with its projected amplitude change under global warming, while in the SH, models with large equatorward biases in storm track latitude tend to project larger poleward shifts. Key Points CMIP5 ensemble projection of mid‐latitude storm track changes are documented Projections consistent with CMIP3 in SH, but significant differences in the NH Models have biases in climatology which are correlated with future projections
ISSN:0148-0227
2169-897X
2156-2202
2169-8996
DOI:10.1029/2012JD018578