Loading…

THE RESEARCH OF RISK- AND CONDITION-BASED MAINTENANCE DECISION-MAKING AND TASK OPTIMIZING SYSTEM FOR ROTATING EQUIPMENT IN LARGE PETROCHEMICAL PLANTS

Downtime of rotating equipment in large petrochemical plants often led to serious or even disastrous safety and environmental accidents, which generally stem from inadequate maintenance or incapability of failure prediction. In order to allocate maintenance resources rationally and improve the relia...

Full description

Saved in:
Bibliographic Details
Published in:International journal of reliability, quality, and safety engineering quality, and safety engineering, 2012-08, Vol.19 (4), p.1250017-1250020
Main Authors: YUAN, QINGBIN, WANG, QINGFENG, GAO, JINJI
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Downtime of rotating equipment in large petrochemical plants often led to serious or even disastrous safety and environmental accidents, which generally stem from inadequate maintenance or incapability of failure prediction. In order to allocate maintenance resources rationally and improve the reliability, availability and safety of equipment, a kind of risk- and condition-based maintenance decision-making and task optimizing system for rotating equipment in large petrochemical plants is established in this paper. Using real-time database, web service and service-oriented architecture (SOA), a risk- and condition-based maintenance decision-making system architecture is developed to provide a unified data structure and man–machine interface, which integrates reliability-centered maintenance (RCM), condition monitoring system (CMS) and manufacturing executive system (MES) together. Risk assessment and condition monitoring technology is applied to form maintenance decision making, such as to determine the priority maintenance level, to optimize maintenance content, and to determine the right maintenance time. Based on the decision-making system, the risk rank and degradation trend of failure characteristics are used to support the decision making and to optimize maintenance tasks. The result of an engineering case shows that the maintenance decision-making based on the risk assessment and condition monitoring can lower the operational risk while enhancing the reliability, availability and safety.
ISSN:0218-5393
1793-6446
DOI:10.1142/S0218539312500179