Loading…
Influence of plant residue chemistry on soil CO2aC production: A study with Arabidopsis thaliana cell wall mutants of KNAT7, MYB75 and CCR1
Alteration of plant lignin concentration is expected to affect the C mineralization of crop residues. Mutations of single genes involved in biosynthesis of secondary cell walls such as KNOTTED ARABIDOPSIS THALIANA 7 (KNAT7), PRODUCTION OF ANTHOCYANIN PIGMENT 1 (PAP1) also known as MYB75, and cinnamo...
Saved in:
Published in: | Pedobiologia 2012-11, Vol.55 (6), p.349-356 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Alteration of plant lignin concentration is expected to affect the C mineralization of crop residues. Mutations of single genes involved in biosynthesis of secondary cell walls such as KNOTTED ARABIDOPSIS THALIANA 7 (KNAT7), PRODUCTION OF ANTHOCYANIN PIGMENT 1 (PAP1) also known as MYB75, and cinnamoyl CoA reductase 1 (CCR1) coding genes could change lignin concentration in specific plant tissues. This study assessed the CO2aC production of soil amended with stem and root tissues of down-regulated (k/o) and over expression (o/x) KNAT7 and MYB75 and the CCR1 k/o mutant lines of A. thaliana. KNAT7 k/o and MYB75 k/o were grown in two different environmental conditions (two cohorts) in the greenhouse. Oven dried, finely ground ( |
---|---|
ISSN: | 0031-4056 |
DOI: | 10.1016/j.pedobi.2012.08.003 |