Loading…

Temperature-Programmed Sputtered Micromachined Gas Chromatography Columns: An Approach to Fast Separations in Oilfield Applications

In a previous study, a new stationary phase deposition technique for micromachined gas chromatography columns was presented. The rerouting of the sputtering technique to this purpose enabled collective and reproducible fabrication of microcolumns in a silicon wafer. Silica-sputtered micromachined co...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) 2013-01, Vol.85 (1), p.114-120
Main Authors: Haudebourg, R, Vial, J, Thiebaut, D, Danaie, K, Breviere, J, Sassiat, P, Azzouz, I, Bourlon, B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In a previous study, a new stationary phase deposition technique for micromachined gas chromatography columns was presented. The rerouting of the sputtering technique to this purpose enabled collective and reproducible fabrication of microcolumns in a silicon wafer. Silica-sputtered micromachined columns showed promising separations of light alkanes in isothermal conditions. In order to go beyond the limitations of isothermal separations, the columns were equipped with sputtered platinum filaments to enable high-speed and low-power temperature programming. The separation performances of temperature-programmed silica- or graphite-sputtered microcolumns were investigated: a separation of light alkanes (C1–C5) was completed in 9 s, and heavier alkanes (until C9), cyclic, isomeric, and unsaturated hydrocarbons were also successfully separated. Versatility of these microcolumns was demonstrated with a high-temperature C1–C2 separation and a C1–C5 separation with nitrogen as carrier gas instead of helium. By matching the requirements of a gas chromatography-based monitoring sensor, in terms of low-cost and industry-ready fabrication process, fast temperature programming and analysis, low power consumption, and good versatility (ambient temperature, carrier gas), these columns should be used in various applications related to oilfield gas analyses.
ISSN:0003-2700
1520-6882
DOI:10.1021/ac3022136