Loading…

19F molecular MR imaging for detection of brain tumor angiogenesis: in vivo validation using targeted PFOB nanoparticles

Molecular imaging with magnetic resonance imaging (MRI) targeted contrast agents has emerged as a promising diagnostic approach in cancer research to detect associated biomarkers. In this work, the potential of 19 F MRI was investigated to detect angiogenesis with α ν β 3 -targeted perfluorooctylbro...

Full description

Saved in:
Bibliographic Details
Published in:Angiogenesis (London) 2013-01, Vol.16 (1), p.171-179
Main Authors: Giraudeau, Céline, Geffroy, Françoise, Mériaux, Sébastien, Boumezbeur, Fawzi, Robert, Philippe, Port, Marc, Robic, Caroline, Le Bihan, Denis, Lethimonnier, Franck, Valette, Julien
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c372t-6733470c44d0940c5b3c6e9abeb33d6fb6e4e3b93f5c35fa3f34d9124d6ecd0b3
cites cdi_FETCH-LOGICAL-c372t-6733470c44d0940c5b3c6e9abeb33d6fb6e4e3b93f5c35fa3f34d9124d6ecd0b3
container_end_page 179
container_issue 1
container_start_page 171
container_title Angiogenesis (London)
container_volume 16
creator Giraudeau, Céline
Geffroy, Françoise
Mériaux, Sébastien
Boumezbeur, Fawzi
Robert, Philippe
Port, Marc
Robic, Caroline
Le Bihan, Denis
Lethimonnier, Franck
Valette, Julien
description Molecular imaging with magnetic resonance imaging (MRI) targeted contrast agents has emerged as a promising diagnostic approach in cancer research to detect associated biomarkers. In this work, the potential of 19 F MRI was investigated to detect angiogenesis with α ν β 3 -targeted perfluorooctylbromide nanoparticles (PFOB NP) in a U87 glioblastoma mouse model at 7 Tesla. Mice were injected intravenously with targeted or non-targeted NP and 19 F images were immediately acquired for 90 min using a PFOB-dedicated MRI sequence. Mice infused with targeted NP exhibited higher concentrations in tumors than mice of the control group, despite the presence of nonspecific signal originating from the blood. Imaging results were corroborated by histology and fluorescence imaging, suggesting specific binding of targeted NP to α ν β 3 integrin. Two other groups of mice were injected 24 h before imaging to allow blood clearance but no significant differences were found between both groups, probably due to a loss of specificity of PFOB NP. This is the first demonstration of the ability of 19 F MRI to detect α ν β 3 -integrin endothelial expression in brain tumors in vivo.
doi_str_mv 10.1007/s10456-012-9310-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1273215515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2858235131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-6733470c44d0940c5b3c6e9abeb33d6fb6e4e3b93f5c35fa3f34d9124d6ecd0b3</originalsourceid><addsrcrecordid>eNp1kV1rFTEQhoNY7LH6A7yRgDferJ18N97Z4tFCpSJ6HbJJdknZTY7J7kH_vTmeKlLwamDmmWdCXoReEHhDANR5JcCF7IDQTjMCHTxCGyIU6xQF_RhtQEvdSa3gFD2t9Q6gNS74E3RKGQimLtgG_SB6i-c8BbdOtuBPX3Cc7RjTiIdcsA9LcEvMCecB98XGhJd1bgObxpjHkEKN9S1u7X3cZ7y3U_T2N7_Wg2OxZWwKjz9vby9xsinvbFmim0J9hk4GO9Xw_L6eoW_b91-vPnY3tx-ur97ddI4punRSMcYVOM49aA5O9MzJoG0fesa8HHoZeGC9ZoNwTAyWDYx7TSj3MjgPPTtDr4_eXcnf11AXM8fqwjTZFPJaDaGKUSIEEQ199QC9y2tJ7XWNklISzalsFDlSruRaSxjMrrQ_Kz8NAXOIxRxjMS0Wc4jFQNt5eW9e-zn4vxt_cmgAPQK1jdIYyj-n_2v9BccimEk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1266619426</pqid></control><display><type>article</type><title>19F molecular MR imaging for detection of brain tumor angiogenesis: in vivo validation using targeted PFOB nanoparticles</title><source>Springer Nature</source><creator>Giraudeau, Céline ; Geffroy, Françoise ; Mériaux, Sébastien ; Boumezbeur, Fawzi ; Robert, Philippe ; Port, Marc ; Robic, Caroline ; Le Bihan, Denis ; Lethimonnier, Franck ; Valette, Julien</creator><creatorcontrib>Giraudeau, Céline ; Geffroy, Françoise ; Mériaux, Sébastien ; Boumezbeur, Fawzi ; Robert, Philippe ; Port, Marc ; Robic, Caroline ; Le Bihan, Denis ; Lethimonnier, Franck ; Valette, Julien</creatorcontrib><description>Molecular imaging with magnetic resonance imaging (MRI) targeted contrast agents has emerged as a promising diagnostic approach in cancer research to detect associated biomarkers. In this work, the potential of 19 F MRI was investigated to detect angiogenesis with α ν β 3 -targeted perfluorooctylbromide nanoparticles (PFOB NP) in a U87 glioblastoma mouse model at 7 Tesla. Mice were injected intravenously with targeted or non-targeted NP and 19 F images were immediately acquired for 90 min using a PFOB-dedicated MRI sequence. Mice infused with targeted NP exhibited higher concentrations in tumors than mice of the control group, despite the presence of nonspecific signal originating from the blood. Imaging results were corroborated by histology and fluorescence imaging, suggesting specific binding of targeted NP to α ν β 3 integrin. Two other groups of mice were injected 24 h before imaging to allow blood clearance but no significant differences were found between both groups, probably due to a loss of specificity of PFOB NP. This is the first demonstration of the ability of 19 F MRI to detect α ν β 3 -integrin endothelial expression in brain tumors in vivo.</description><identifier>ISSN: 0969-6970</identifier><identifier>EISSN: 1573-7209</identifier><identifier>DOI: 10.1007/s10456-012-9310-0</identifier><identifier>PMID: 23053783</identifier><identifier>CODEN: AGIOFT</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Animals ; Biomedical and Life Sciences ; Biomedicine ; Brain Neoplasms - blood supply ; Brain Neoplasms - diagnosis ; Brain Neoplasms - pathology ; Cancer Research ; Cardiology ; Cell Biology ; Cell Line, Tumor ; Fluorine ; Fluorocarbons - administration &amp; dosage ; Humans ; Injections ; Magnetic Resonance Imaging ; Mice ; Microscopy, Fluorescence ; Molecular Imaging ; Nanoparticles ; Neovascularization, Pathologic ; Oligopeptides ; Oncology ; Ophthalmology ; Original Paper ; Reproducibility of Results ; Xenograft Model Antitumor Assays</subject><ispartof>Angiogenesis (London), 2013-01, Vol.16 (1), p.171-179</ispartof><rights>Springer Science+Business Media Dordrecht 2012</rights><rights>Springer Science+Business Media Dordrecht 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-6733470c44d0940c5b3c6e9abeb33d6fb6e4e3b93f5c35fa3f34d9124d6ecd0b3</citedby><cites>FETCH-LOGICAL-c372t-6733470c44d0940c5b3c6e9abeb33d6fb6e4e3b93f5c35fa3f34d9124d6ecd0b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23053783$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Giraudeau, Céline</creatorcontrib><creatorcontrib>Geffroy, Françoise</creatorcontrib><creatorcontrib>Mériaux, Sébastien</creatorcontrib><creatorcontrib>Boumezbeur, Fawzi</creatorcontrib><creatorcontrib>Robert, Philippe</creatorcontrib><creatorcontrib>Port, Marc</creatorcontrib><creatorcontrib>Robic, Caroline</creatorcontrib><creatorcontrib>Le Bihan, Denis</creatorcontrib><creatorcontrib>Lethimonnier, Franck</creatorcontrib><creatorcontrib>Valette, Julien</creatorcontrib><title>19F molecular MR imaging for detection of brain tumor angiogenesis: in vivo validation using targeted PFOB nanoparticles</title><title>Angiogenesis (London)</title><addtitle>Angiogenesis</addtitle><addtitle>Angiogenesis</addtitle><description>Molecular imaging with magnetic resonance imaging (MRI) targeted contrast agents has emerged as a promising diagnostic approach in cancer research to detect associated biomarkers. In this work, the potential of 19 F MRI was investigated to detect angiogenesis with α ν β 3 -targeted perfluorooctylbromide nanoparticles (PFOB NP) in a U87 glioblastoma mouse model at 7 Tesla. Mice were injected intravenously with targeted or non-targeted NP and 19 F images were immediately acquired for 90 min using a PFOB-dedicated MRI sequence. Mice infused with targeted NP exhibited higher concentrations in tumors than mice of the control group, despite the presence of nonspecific signal originating from the blood. Imaging results were corroborated by histology and fluorescence imaging, suggesting specific binding of targeted NP to α ν β 3 integrin. Two other groups of mice were injected 24 h before imaging to allow blood clearance but no significant differences were found between both groups, probably due to a loss of specificity of PFOB NP. This is the first demonstration of the ability of 19 F MRI to detect α ν β 3 -integrin endothelial expression in brain tumors in vivo.</description><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain Neoplasms - blood supply</subject><subject>Brain Neoplasms - diagnosis</subject><subject>Brain Neoplasms - pathology</subject><subject>Cancer Research</subject><subject>Cardiology</subject><subject>Cell Biology</subject><subject>Cell Line, Tumor</subject><subject>Fluorine</subject><subject>Fluorocarbons - administration &amp; dosage</subject><subject>Humans</subject><subject>Injections</subject><subject>Magnetic Resonance Imaging</subject><subject>Mice</subject><subject>Microscopy, Fluorescence</subject><subject>Molecular Imaging</subject><subject>Nanoparticles</subject><subject>Neovascularization, Pathologic</subject><subject>Oligopeptides</subject><subject>Oncology</subject><subject>Ophthalmology</subject><subject>Original Paper</subject><subject>Reproducibility of Results</subject><subject>Xenograft Model Antitumor Assays</subject><issn>0969-6970</issn><issn>1573-7209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kV1rFTEQhoNY7LH6A7yRgDferJ18N97Z4tFCpSJ6HbJJdknZTY7J7kH_vTmeKlLwamDmmWdCXoReEHhDANR5JcCF7IDQTjMCHTxCGyIU6xQF_RhtQEvdSa3gFD2t9Q6gNS74E3RKGQimLtgG_SB6i-c8BbdOtuBPX3Cc7RjTiIdcsA9LcEvMCecB98XGhJd1bgObxpjHkEKN9S1u7X3cZ7y3U_T2N7_Wg2OxZWwKjz9vby9xsinvbFmim0J9hk4GO9Xw_L6eoW_b91-vPnY3tx-ur97ddI4punRSMcYVOM49aA5O9MzJoG0fesa8HHoZeGC9ZoNwTAyWDYx7TSj3MjgPPTtDr4_eXcnf11AXM8fqwjTZFPJaDaGKUSIEEQ199QC9y2tJ7XWNklISzalsFDlSruRaSxjMrrQ_Kz8NAXOIxRxjMS0Wc4jFQNt5eW9e-zn4vxt_cmgAPQK1jdIYyj-n_2v9BccimEk</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Giraudeau, Céline</creator><creator>Geffroy, Françoise</creator><creator>Mériaux, Sébastien</creator><creator>Boumezbeur, Fawzi</creator><creator>Robert, Philippe</creator><creator>Port, Marc</creator><creator>Robic, Caroline</creator><creator>Le Bihan, Denis</creator><creator>Lethimonnier, Franck</creator><creator>Valette, Julien</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20130101</creationdate><title>19F molecular MR imaging for detection of brain tumor angiogenesis: in vivo validation using targeted PFOB nanoparticles</title><author>Giraudeau, Céline ; Geffroy, Françoise ; Mériaux, Sébastien ; Boumezbeur, Fawzi ; Robert, Philippe ; Port, Marc ; Robic, Caroline ; Le Bihan, Denis ; Lethimonnier, Franck ; Valette, Julien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-6733470c44d0940c5b3c6e9abeb33d6fb6e4e3b93f5c35fa3f34d9124d6ecd0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain Neoplasms - blood supply</topic><topic>Brain Neoplasms - diagnosis</topic><topic>Brain Neoplasms - pathology</topic><topic>Cancer Research</topic><topic>Cardiology</topic><topic>Cell Biology</topic><topic>Cell Line, Tumor</topic><topic>Fluorine</topic><topic>Fluorocarbons - administration &amp; dosage</topic><topic>Humans</topic><topic>Injections</topic><topic>Magnetic Resonance Imaging</topic><topic>Mice</topic><topic>Microscopy, Fluorescence</topic><topic>Molecular Imaging</topic><topic>Nanoparticles</topic><topic>Neovascularization, Pathologic</topic><topic>Oligopeptides</topic><topic>Oncology</topic><topic>Ophthalmology</topic><topic>Original Paper</topic><topic>Reproducibility of Results</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giraudeau, Céline</creatorcontrib><creatorcontrib>Geffroy, Françoise</creatorcontrib><creatorcontrib>Mériaux, Sébastien</creatorcontrib><creatorcontrib>Boumezbeur, Fawzi</creatorcontrib><creatorcontrib>Robert, Philippe</creatorcontrib><creatorcontrib>Port, Marc</creatorcontrib><creatorcontrib>Robic, Caroline</creatorcontrib><creatorcontrib>Le Bihan, Denis</creatorcontrib><creatorcontrib>Lethimonnier, Franck</creatorcontrib><creatorcontrib>Valette, Julien</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Angiogenesis (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giraudeau, Céline</au><au>Geffroy, Françoise</au><au>Mériaux, Sébastien</au><au>Boumezbeur, Fawzi</au><au>Robert, Philippe</au><au>Port, Marc</au><au>Robic, Caroline</au><au>Le Bihan, Denis</au><au>Lethimonnier, Franck</au><au>Valette, Julien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>19F molecular MR imaging for detection of brain tumor angiogenesis: in vivo validation using targeted PFOB nanoparticles</atitle><jtitle>Angiogenesis (London)</jtitle><stitle>Angiogenesis</stitle><addtitle>Angiogenesis</addtitle><date>2013-01-01</date><risdate>2013</risdate><volume>16</volume><issue>1</issue><spage>171</spage><epage>179</epage><pages>171-179</pages><issn>0969-6970</issn><eissn>1573-7209</eissn><coden>AGIOFT</coden><abstract>Molecular imaging with magnetic resonance imaging (MRI) targeted contrast agents has emerged as a promising diagnostic approach in cancer research to detect associated biomarkers. In this work, the potential of 19 F MRI was investigated to detect angiogenesis with α ν β 3 -targeted perfluorooctylbromide nanoparticles (PFOB NP) in a U87 glioblastoma mouse model at 7 Tesla. Mice were injected intravenously with targeted or non-targeted NP and 19 F images were immediately acquired for 90 min using a PFOB-dedicated MRI sequence. Mice infused with targeted NP exhibited higher concentrations in tumors than mice of the control group, despite the presence of nonspecific signal originating from the blood. Imaging results were corroborated by histology and fluorescence imaging, suggesting specific binding of targeted NP to α ν β 3 integrin. Two other groups of mice were injected 24 h before imaging to allow blood clearance but no significant differences were found between both groups, probably due to a loss of specificity of PFOB NP. This is the first demonstration of the ability of 19 F MRI to detect α ν β 3 -integrin endothelial expression in brain tumors in vivo.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>23053783</pmid><doi>10.1007/s10456-012-9310-0</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0969-6970
ispartof Angiogenesis (London), 2013-01, Vol.16 (1), p.171-179
issn 0969-6970
1573-7209
language eng
recordid cdi_proquest_miscellaneous_1273215515
source Springer Nature
subjects Animals
Biomedical and Life Sciences
Biomedicine
Brain Neoplasms - blood supply
Brain Neoplasms - diagnosis
Brain Neoplasms - pathology
Cancer Research
Cardiology
Cell Biology
Cell Line, Tumor
Fluorine
Fluorocarbons - administration & dosage
Humans
Injections
Magnetic Resonance Imaging
Mice
Microscopy, Fluorescence
Molecular Imaging
Nanoparticles
Neovascularization, Pathologic
Oligopeptides
Oncology
Ophthalmology
Original Paper
Reproducibility of Results
Xenograft Model Antitumor Assays
title 19F molecular MR imaging for detection of brain tumor angiogenesis: in vivo validation using targeted PFOB nanoparticles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T00%3A59%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=19F%20molecular%20MR%20imaging%20for%20detection%20of%20brain%20tumor%20angiogenesis:%20in%20vivo%20validation%20using%20targeted%20PFOB%20nanoparticles&rft.jtitle=Angiogenesis%20(London)&rft.au=Giraudeau,%20C%C3%A9line&rft.date=2013-01-01&rft.volume=16&rft.issue=1&rft.spage=171&rft.epage=179&rft.pages=171-179&rft.issn=0969-6970&rft.eissn=1573-7209&rft.coden=AGIOFT&rft_id=info:doi/10.1007/s10456-012-9310-0&rft_dat=%3Cproquest_cross%3E2858235131%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-6733470c44d0940c5b3c6e9abeb33d6fb6e4e3b93f5c35fa3f34d9124d6ecd0b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1266619426&rft_id=info:pmid/23053783&rfr_iscdi=true