Loading…

Decoherence-induced surface hopping

A simple surface hopping method for nonadiabatic molecular dynamics is developed. The method derives from a stochastic modeling of the time-dependent Schrödinger and master equations for open systems and accounts simultaneously for quantum mechanical branching in the otherwise classical (nuclear) de...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2012-12, Vol.137 (22), p.22A545-22A545
Main Authors: Jaeger, Heather M, Fischer, Sean, Prezhdo, Oleg V
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A simple surface hopping method for nonadiabatic molecular dynamics is developed. The method derives from a stochastic modeling of the time-dependent Schrödinger and master equations for open systems and accounts simultaneously for quantum mechanical branching in the otherwise classical (nuclear) degrees of freedom and loss of coherence within the quantum (electronic) subsystem due to coupling to nuclei. Electronic dynamics in the Hilbert space takes the form of a unitary evolution, intermittent with stochastic decoherence events that are manifested as a localization toward (adiabatic) basis states. Classical particles evolve along a single potential energy surface and can switch surfaces only at the decoherence events. Thus, decoherence provides physical justification of surface hopping, obviating the need for ad hoc surface hopping rules. The method is tested with model problems, showing good agreement with the exact quantum mechanical results and providing an improvement over the most popular surface hopping technique. The method is implemented within real-time time-dependent density functional theory formulated in the Kohn-Sham representation and is applied to carbon nanotubes and graphene nanoribbons. The calculated time scales of non-radiative quenching of luminescence in these systems agree with the experimental data and earlier calculations.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.4757100