Loading…

Development of Porous Silicon Nanocarriers for Parenteral Peptide Delivery

Porous silicon (PSi) is receiving growing attention in biomedical research, for example, in drug and peptide delivery. Inspired by several advantages of PSi, herein, thermally oxidized (TOPSi, hydrophilic), undecylenic acid-treated thermally hydrocarbonized (UnTHCPSi, moderately hydrophilic), and th...

Full description

Saved in:
Bibliographic Details
Published in:Molecular pharmaceutics 2013-01, Vol.10 (1), p.353-359
Main Authors: Kovalainen, Miia, Mönkäre, Juha, Kaasalainen, Martti, Riikonen, Joakim, Lehto, Vesa-Pekka, Salonen, Jarno, Herzig, Karl-Heinz, Järvinen, Kristiina
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Porous silicon (PSi) is receiving growing attention in biomedical research, for example, in drug and peptide delivery. Inspired by several advantages of PSi, herein, thermally oxidized (TOPSi, hydrophilic), undecylenic acid-treated thermally hydrocarbonized (UnTHCPSi, moderately hydrophilic), and thermally hydrocarbonized (THCPSi, hydrophobic) PSi nanocarriers are investigated for sustained subcutaneous (sc) and intravenous (iv) peptide delivery. The route of administration is shown to affect drastically peptide YY3–36 (PYY3-36) release from the PSi nanocarriers in mice. Subcutaneous nanocarriers are demonstrated to be capable to sustain PYY3-36 delivery over 4 days, with the high absolute bioavailability values of PYY3-36. The pharmacokinetic parameters of PYY3-36 are presented to be similar between the sc PSi nanocarriers despite surface chemistry. In contrast, iv-delivered PSi nanocarriers display significant differences between the surface types. Overall, these results demonstrate the feasibility of PSi nanocarriers for the sustained sc delivery of peptides.
ISSN:1543-8384
1543-8392
DOI:10.1021/mp300494p