Loading…

Self-Assembly Solid-State Enhanced Red Emission of Quinolinemalononitrile: Optical Waveguides and Stimuli Response

The fluorescence of luminescent emitters is often quenched in the solid state, because of the typical aggregation-caused quenching (ACQ) effect, which is a thorny obstacle to high-performance organic optoelectronic materials. The exploration of solid-state enhanced long wavelength, red-emitting chro...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2013-01, Vol.5 (1), p.192-198
Main Authors: Shi, Chuanxing, Guo, Zhiqian, Yan, Yongli, Zhu, Shiqin, Xie, Yongshu, Zhao, Yong Sheng, Zhu, Weihong, Tian, He
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The fluorescence of luminescent emitters is often quenched in the solid state, because of the typical aggregation-caused quenching (ACQ) effect, which is a thorny obstacle to high-performance organic optoelectronic materials. The exploration of solid-state enhanced long wavelength, red-emitting chromophores, especially possessing one-dimensional (1D) assembly features, is of great importance. Interestingly, an excellent solid-state enhanced red emission system (denoted as ED) based on quinolinemalononitrile has been developed via the delicate modification of the conventional ACQ dicyanomethylene-4H-pyran (DCM) derivative (denoted as BD) through crystal engineering. ED exhibits extraordinary self-assembly property in a variety of solvents, even realizing the “waving ribbons” with a length of 6 mm and a diameter of 10 μm. Crystal analysis shows that the CH···π and CH···N supramolecular interactions of ED contribute to the twisted self-assembly solid-state enhanced emission phenomenon. However, for BD, strong face-to-face stacking leads to fluorescence quenching in the solid state. Because of such easy assembly and strong solid-state emission properties, application for optical waveguides of ED is realized with a low optical loss. Stimuli-responsive behavior is also elaborated with color change between orange and red by grinding/fuming or pressing/heating.
ISSN:1944-8244
1944-8252
DOI:10.1021/am302466m