Loading…

Application of Implantable Wireless Biomicrosystem for Monitoring Nerve Impedance of Rat After Sciatic Nerve Injury

Electrical stimulation is usually applied percutaneously for facilitating peripheral nerve regeneration. However, few studies have conducted long-term monitoring of the condition of nerve regeneration. This study implements an implantable biomicrosystem for inducing pulse current for aiding nerve re...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on neural systems and rehabilitation engineering 2013-01, Vol.21 (1), p.121-128
Main Authors: Li, Yu-Ting, Peng, Chih-Wei, Chen, Lung-Tai, Lin, Wen-Shan, Chu, Chun-Hsun, Chen, Jia-Jin Jason
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Electrical stimulation is usually applied percutaneously for facilitating peripheral nerve regeneration. However, few studies have conducted long-term monitoring of the condition of nerve regeneration. This study implements an implantable biomicrosystem for inducing pulse current for aiding nerve repair and monitoring the time-course changes of nerve impedance for assessing nerve regeneration in sciatic nerve injury rat model. For long-term implantation, a transcutaneous magnetic coupling technique is adopted for power and data transmission. For in vivo study, the implanted module was placed in the rat's abdomen and the cuff electrode was wrapped around an 8-mm sciatic nerve gap of the rat for nerve impedance measurement for 42 days. One group of animals received monophasic constant current via the cuff electrode and a second group had no stimulation between days 8-21. The nerve impedance increased to above 150% of the initial value in the nerve regeneration groups with and without stimulation whereas the group with no nerve regeneration increased to only 113% at day 42. The impedance increase in nerve regeneration groups can be observed before evident functional recovery. Also, the nerve regeneration group that received electrical stimulation had relatively higher myelinated fiber density than that of no stimulation group, 20686 versus 11417 fiber/mm 2 . The developed implantable biomicrosystem is proven to be a useful experimental tool for long-term stimulation in aiding nerve fiber growth as well as impedance assessment for understanding the time-course changes of nerve regeneration.
ISSN:1534-4320
1558-0210
DOI:10.1109/TNSRE.2012.2219883