Loading…
Effect of phenethyl isothiocyanate on Ca2+ movement and viability in MDCK canine renal tubular cells
The effect of the natural compound phenethyl isothiocyanate (PEITC) on cytosolic Ca2+ concentrations ([Ca2+]i) and viability in MDCK renal cells is unknown. This study explored whether PEITC changed [Ca2+]i in MDCK cells using the Ca2+-sensitive fluorescent dye fura-2. PEITC at 200–700 μM increased...
Saved in:
Published in: | Human & experimental toxicology 2012-12, Vol.31 (12), p.1251-1261 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The effect of the natural compound phenethyl isothiocyanate (PEITC) on cytosolic Ca2+ concentrations ([Ca2+]i) and viability in MDCK renal cells is unknown. This study explored whether PEITC changed [Ca2+]i in MDCK cells using the Ca2+-sensitive fluorescent dye fura-2. PEITC at 200–700 μM increased [Ca2+]i in a concentration-dependent manner. The signal was reduced by removing extracellular Ca2+. PEITC-induced Ca2+ influx was inhibited by nifedipine, econazole, SK&F 96365 and protein kinase C modulators. In Ca2+-free medium, treatment with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin (TG) or 2,5-di-tert-butylhydroquinone (BHQ) inhibited PEITC-induced rise in [Ca2+]i. Incubation with PEITC also inhibited TG or BHQ-induced rise in [Ca2+]i. Inhibition of phospholipase C with U73122 abolished PEITC-induced rise in [Ca2+]i. At 15–75 μM, PEITC decreased viability. The cytotoxic effect of PEITC was enhanced by chelating cytosolic Ca2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid/acetoxymethyl ester. Annexin V-FITC data suggest that 20 and 50 μM PEITC induced apoptosis. At 10 and 15 μM, PEITC did not increase reactive oxygen species (ROS) production. Together, in renal tubular cells, PEITC-induced rise in [Ca2+]i by inducing phospholipase C-dependent Ca2+ release from endoplasmic reticulum and Ca2+ entry via store-operated Ca2+ channels. PEITC induced apoptosis in a concentration-dependent, ROS/Ca2+-independent manner. |
---|---|
ISSN: | 0960-3271 1477-0903 |
DOI: | 10.1177/0960327112446841 |