Loading…

Ultrasensitive and Selective Electrochemical Diagnosis of Breast Cancer Based on a Hydrazine–Au Nanoparticle–Aptamer Bioconjugate

Human epidermal growth factor receptor 2 (HER2) and HER2-overexpressing breast cancer cells were detected using an electrochemical immunosensor combined with hydrazine and aptamer-conjugated gold nanoparticles (AuNPs). The sensor probe was fabricated by covalently immobilizing anti-HER2 onto a nanoc...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) 2013-01, Vol.85 (2), p.1058-1064
Main Authors: Zhu, Ye, Chandra, Pranjal, Shim, Yoon-Bo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Human epidermal growth factor receptor 2 (HER2) and HER2-overexpressing breast cancer cells were detected using an electrochemical immunosensor combined with hydrazine and aptamer-conjugated gold nanoparticles (AuNPs). The sensor probe was fabricated by covalently immobilizing anti-HER2 onto a nanocomposite layer that was composed of self-assembled 2,5-bis(2-thienyl)-1H-pyrrole-1-(p-benzoic acid) (DPB) on AuNPs. The hydrazine–AuNP–aptamer bioconjugate, where the hydrazine reductant was directly attached onto AuNPs to avoid the nonspecific deposition of silver on the sensor surface, was designed and used to reduce silver ion for signal amplification selectively. The silver-stained target cells were visualized easily by the bare eye and an optical microscope, and the cells were quantitatively analyzed using stripping voltammetry. The parameters affecting the analytical response were optimized. The proposed sensor was capable of differentiating between HER2-positive breast cancer cells and HER2-negative cells. This method exhibited an excellent diagnosis method for the ultrasensitive detection of SK-BR-3 breast cancer cells in human serum samples with a detection limit of 26 cells/mL.
ISSN:0003-2700
1520-6882
DOI:10.1021/ac302923k