Loading…

Lithium–Sulfur Battery Cathode Enabled by Lithium–Nitrile Interaction

Lithium sulfide is a promising cathode material for high-energy lithium ion batteries because, unlike elemental sulfur, it obviates the need for metallic lithium anodes. Like elemental sulfur, however, a successful lithium sulfide cathode requires an inherent mechanism for preventing lithium polysul...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2013-01, Vol.135 (2), p.763-767
Main Authors: Guo, Juchen, Yang, Zichao, Yu, Yingchao, Abruña, Héctor D, Archer, Lynden A
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Lithium sulfide is a promising cathode material for high-energy lithium ion batteries because, unlike elemental sulfur, it obviates the need for metallic lithium anodes. Like elemental sulfur, however, a successful lithium sulfide cathode requires an inherent mechanism for preventing lithium polysulfide dissolution and shuttling during electrochemical cycling. A new scheme is proposed to create composites based on lithium sulfide uniformly dispersed in a carbon host, which serve to sequester polysulfides. The synthesis methodology makes use of interactions between lithium ions in solution and nitrile groups uniformly distributed along the chain backbone of a polymer precursor (e.g., polyacrylonitrile), to control the distribution of lithium sulfide in the host material. The Li2S–carbon composites obtained by carbonizing the precursor are evaluated as cathode materials in a half-cell lithium battery, and are shown to yield high galvanic charge/discharge capacities and excellent Coulombic efficiency, demonstrating the effectiveness of the architecture in homogeneously distributing Li2S and in sequestering lithium polysulfides.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja309435f