Loading…
Control of Crystallinity and Porosity of Covalent Organic Frameworks by Managing Interlayer Interactions Based on Self-Complementary π‑Electronic Force
Crystallinity and porosity are crucial for crystalline porous covalent organic frameworks (COFs). Here we report synthetic control over the crystallinity and porosity of COFs by managing interlayer interactions based on self-complementary π-electronic forces. Fluoro-substituted and nonsubstituted ar...
Saved in:
Published in: | Journal of the American Chemical Society 2013-01, Vol.135 (2), p.546-549 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Crystallinity and porosity are crucial for crystalline porous covalent organic frameworks (COFs). Here we report synthetic control over the crystallinity and porosity of COFs by managing interlayer interactions based on self-complementary π-electronic forces. Fluoro-substituted and nonsubstituted aromatic units at different molar ratios were integrated into the edge units that stack to trigger self-complementary π-electronic interactions in the COFs. The interactions improve the crystallinity and enhance the porosity by maximizing the total crystal stacking energy and minimizing the unit cell size. Consequently, the COF consisting of equimolar amounts of fluoro-substituted and nonsubstituted units showed the largest effect. These results suggest a new approach to the design of COFs by managing the interlayer interactions. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/ja3100319 |