Loading…
Fast Switching Water Processable Electrochromic Polymers
This paper describes the synthesis of two new blue to transmissive donor–acceptor electrochromic polymers: a polymer synthesized using an alternating copolymerization route (ECP-Blue-A) and a polymer synthesized using a random copolymerization (ECP-Blue-R) by Stille polymerization. These polymers ut...
Saved in:
Published in: | ACS applied materials & interfaces 2012-12, Vol.4 (12), p.6512-6521 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper describes the synthesis of two new blue to transmissive donor–acceptor electrochromic polymers: a polymer synthesized using an alternating copolymerization route (ECP-Blue-A) and a polymer synthesized using a random copolymerization (ECP-Blue-R) by Stille polymerization. These polymers utilize side chains with four ester groups per donor moiety, allowing organic solubility in the ester form, and water solubility upon saponification to their carboxylate salt form. We demonstrate that the saponified polymer salts of ECP-Blue-A and ECP-Blue-R (WS-ECP-Blue-A and WS-ECP-Blue-R) can be processed from aqueous solutions into thin films by spray-casting. Upon the subsequent neutralization of the thin films, the resulting polymer acid films are solvent resistant and can be electrochemically switched between their colored state and a transmissive state in a KNO3/water electrolyte solution. The polymer acids, WS-ECP-Blue-A-acid and WS-ECP-Blue-R-acid, show electrochromic contrast Δ%T of 38% at 655 nm and 39% at 555 nm for a 0.5 s switch, demonstrating the advantage of an aqueous compatible electrochrome switchable in high ionic conductivity aqueous electrolytes. The results of the electrochromic properties study indicate that these polymers are promising candidates for aqueous processable and aqueous switching electrochromic materials and devices as desired for applications where environmental impact is of importance. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/am3015394 |