Loading…
The potential of Sutherlandia frutescens for herb-drug interaction
In Africa, Sutherlandia frutescens is a popular medicinal herb widely consumed by people living with human immunodeficiency virus/AIDS. Concomitant use with antiretroviral drugs has generated concerns of herb-drug interaction (HDI). This study investigated the inhibitory effects of the crude extract...
Saved in:
Published in: | Drug metabolism and disposition 2013-02, Vol.41 (2), p.488-497 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In Africa, Sutherlandia frutescens is a popular medicinal herb widely consumed by people living with human immunodeficiency virus/AIDS. Concomitant use with antiretroviral drugs has generated concerns of herb-drug interaction (HDI). This study investigated the inhibitory effects of the crude extracts of S. frutescens on the major cytochrome P450 isozymes with the use of pooled human liver microsomes. Its effect on the metabolic clearance of midazolam using cryopreserved hepatocytes was also monitored. The potential of S. frutescens to inhibit human ATP-binding cassette transporters (P-gp and BCRP) and the human organic anion transporting polypeptide (OATP1B1 and OATP1B3) activity was assessed using cell lines overexpressing the transporter proteins. S. frutescens showed inhibitory potency for CYP1A2 (IC(50) = 41.0 µg/ml), CYP2A6 (IC(50) = 160 µg/ml), CYP2B6 (IC(50) = 20.0 µg/ml), CYP2C8 (IC(50) = 22.4 µg/ml), CYP2C9 (IC(50) = 23.0 µg/ml), CYP2C19 (IC(50) = 35.9 µg/ml), and CYP3A4/5 (IC(50) = 17.5 µg/ml [with midazolam1'-hydroxylation]; IC(50) = 28.3 µg/ml [with testosterone 6β-hydroxylation]). Time-dependent (irreversible) inhibition by S. frutescens was observed for CYP3A4/5 (K(I) = 296 µg/ml, k(inact) = 0.063 min(-1)) under the conditions of this study. S. frutescens also delays the production of midazolam metabolites in the hepatocytes, decreasing its clearance by 40%. Furthermore, S. frutescens inhibited P-gp (IC(50) = 324.8 µg/ml), OATP1B1 (IC(50) = 10.4 µg/ml), and OATP1B3 (IC(50) = 6.6 µg/ml). The result indicates the potential for HDI between S. frutescens and the substrates of the affected enzymes, if sufficient in vivo concentration of the extract is attained. |
---|---|
ISSN: | 0090-9556 1521-009X |
DOI: | 10.1124/dmd.112.049593 |