Loading…

The complementary use of electron backscatter diffraction and ion channelling imaging for the characterization of nanotwins

Summary On the example of electrodeposited nickel films, it is shown that unique information on twins with dimensions on the nanoscale can be obtained by suitable combination of ion channelling imaging and electron backscatter diffraction analysis, whereas both (routine) single techniques cannot mee...

Full description

Saved in:
Bibliographic Details
Published in:Journal of microscopy (Oxford) 2013-02, Vol.249 (2), p.111-118
Main Authors: ALIMADADI, H., FANTA, A.B., PANTLEON, K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Summary On the example of electrodeposited nickel films, it is shown that unique information on twins with dimensions on the nanoscale can be obtained by suitable combination of ion channelling imaging and electron backscatter diffraction analysis, whereas both (routine) single techniques cannot meet the requirements for analysis of these films. High‐resolution electron backscatter diffraction is inadequate for full characterization of nanotwins, but image quality maps obtained from electron backscatter diffraction at least yield a qualitative estimation of the location and number of nanotwins. Complementing this information with ion channelling imaging provides more representative insights into the microstructure, because it supplements the quantitative investigation of the number and width of twin lamellae with additional crystallographic orientation analysis provided by EBSD. To this end, two methods for adjusting EBSD data based on ion channelling images are proposed. Thorough selection of the complementary techniques opens future perspectives for the investigation of other challenging samples with nanoscale features in the microstructure.
ISSN:0022-2720
1365-2818
DOI:10.1111/j.1365-2818.2012.03690.x