Loading…
Stability of Positive Differential Systems With Delay
We first prove an explicit criterion for positive linear time-varying differential systems with distributed delay. Then some simple criteria for exponential stability of positive linear time-invariant differential systems with delay are presented. Finally, we extend obtained results to linear differ...
Saved in:
Published in: | IEEE transactions on automatic control 2013-01, Vol.58 (1), p.203-209 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c324t-7e80f64899e4452bbc608379abc5b21d7931fc79c6079a7dcc86ad1d61973a193 |
---|---|
cites | cdi_FETCH-LOGICAL-c324t-7e80f64899e4452bbc608379abc5b21d7931fc79c6079a7dcc86ad1d61973a193 |
container_end_page | 209 |
container_issue | 1 |
container_start_page | 203 |
container_title | IEEE transactions on automatic control |
container_volume | 58 |
creator | Ngoc, Pham Huu Anh |
description | We first prove an explicit criterion for positive linear time-varying differential systems with distributed delay. Then some simple criteria for exponential stability of positive linear time-invariant differential systems with delay are presented. Finally, we extend obtained results to linear differential systems with time-varying delay and to nonlinear differential systems with delay. The results given in this technical note are extensions of some recent results in ,[7],[11] and [14]. |
doi_str_mv | 10.1109/TAC.2012.2203031 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1283651236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6213084</ieee_id><sourcerecordid>2851337901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-7e80f64899e4452bbc608379abc5b21d7931fc79c6079a7dcc86ad1d61973a193</originalsourceid><addsrcrecordid>eNpdkM1LAzEQxYMoWKt3wcuCFy9bM8luNjmW-gkFhVY8hmx2ginbbt2kwv73prR48DTM4_feDI-Qa6ATAKrul9PZhFFgE8YopxxOyAjKUuasZPyUjCgFmSsmxTm5CGGVVlEUMCLlIpratz4OWeey9y746H8we_DOYY-b6E2bLYYQcR2yTx-_sgdszXBJzpxpA14d55h8PD0uZy_5_O35dTad55azIuYVSupEIZXCoihZXVtBJa-UqW1ZM2gqxcHZSiU5iVVjrRSmgUaAqrgBxcfk7pC77bvvHYao1z5YbFuzwW4XNDDJRQmMi4Te_kNX3a7fpO8Sla5LJek-kB4o23ch9Oj0tvdr0w8aqN73qFOPet-jPvaYLDcHi0fEP1ww4FQW_BfFMmvx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1244589809</pqid></control><display><type>article</type><title>Stability of Positive Differential Systems With Delay</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Ngoc, Pham Huu Anh</creator><creatorcontrib>Ngoc, Pham Huu Anh</creatorcontrib><description>We first prove an explicit criterion for positive linear time-varying differential systems with distributed delay. Then some simple criteria for exponential stability of positive linear time-invariant differential systems with delay are presented. Finally, we extend obtained results to linear differential systems with time-varying delay and to nonlinear differential systems with delay. The results given in this technical note are extensions of some recent results in ,[7],[11] and [14].</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2012.2203031</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Automatic control ; Biological system modeling ; Criteria ; Delay ; Exponential stability ; Linear matrix inequalities ; Nonlinearity ; positive system ; Stability ; Stability criteria ; time delay system ; Time varying systems ; Vectors</subject><ispartof>IEEE transactions on automatic control, 2013-01, Vol.58 (1), p.203-209</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-7e80f64899e4452bbc608379abc5b21d7931fc79c6079a7dcc86ad1d61973a193</citedby><cites>FETCH-LOGICAL-c324t-7e80f64899e4452bbc608379abc5b21d7931fc79c6079a7dcc86ad1d61973a193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6213084$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Ngoc, Pham Huu Anh</creatorcontrib><title>Stability of Positive Differential Systems With Delay</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>We first prove an explicit criterion for positive linear time-varying differential systems with distributed delay. Then some simple criteria for exponential stability of positive linear time-invariant differential systems with delay are presented. Finally, we extend obtained results to linear differential systems with time-varying delay and to nonlinear differential systems with delay. The results given in this technical note are extensions of some recent results in ,[7],[11] and [14].</description><subject>Automatic control</subject><subject>Biological system modeling</subject><subject>Criteria</subject><subject>Delay</subject><subject>Exponential stability</subject><subject>Linear matrix inequalities</subject><subject>Nonlinearity</subject><subject>positive system</subject><subject>Stability</subject><subject>Stability criteria</subject><subject>time delay system</subject><subject>Time varying systems</subject><subject>Vectors</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpdkM1LAzEQxYMoWKt3wcuCFy9bM8luNjmW-gkFhVY8hmx2ginbbt2kwv73prR48DTM4_feDI-Qa6ATAKrul9PZhFFgE8YopxxOyAjKUuasZPyUjCgFmSsmxTm5CGGVVlEUMCLlIpratz4OWeey9y746H8we_DOYY-b6E2bLYYQcR2yTx-_sgdszXBJzpxpA14d55h8PD0uZy_5_O35dTad55azIuYVSupEIZXCoihZXVtBJa-UqW1ZM2gqxcHZSiU5iVVjrRSmgUaAqrgBxcfk7pC77bvvHYao1z5YbFuzwW4XNDDJRQmMi4Te_kNX3a7fpO8Sla5LJek-kB4o23ch9Oj0tvdr0w8aqN73qFOPet-jPvaYLDcHi0fEP1ww4FQW_BfFMmvx</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Ngoc, Pham Huu Anh</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>201301</creationdate><title>Stability of Positive Differential Systems With Delay</title><author>Ngoc, Pham Huu Anh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-7e80f64899e4452bbc608379abc5b21d7931fc79c6079a7dcc86ad1d61973a193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Automatic control</topic><topic>Biological system modeling</topic><topic>Criteria</topic><topic>Delay</topic><topic>Exponential stability</topic><topic>Linear matrix inequalities</topic><topic>Nonlinearity</topic><topic>positive system</topic><topic>Stability</topic><topic>Stability criteria</topic><topic>time delay system</topic><topic>Time varying systems</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ngoc, Pham Huu Anh</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ngoc, Pham Huu Anh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of Positive Differential Systems With Delay</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2013-01</date><risdate>2013</risdate><volume>58</volume><issue>1</issue><spage>203</spage><epage>209</epage><pages>203-209</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>We first prove an explicit criterion for positive linear time-varying differential systems with distributed delay. Then some simple criteria for exponential stability of positive linear time-invariant differential systems with delay are presented. Finally, we extend obtained results to linear differential systems with time-varying delay and to nonlinear differential systems with delay. The results given in this technical note are extensions of some recent results in ,[7],[11] and [14].</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2012.2203031</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2013-01, Vol.58 (1), p.203-209 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_proquest_miscellaneous_1283651236 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Automatic control Biological system modeling Criteria Delay Exponential stability Linear matrix inequalities Nonlinearity positive system Stability Stability criteria time delay system Time varying systems Vectors |
title | Stability of Positive Differential Systems With Delay |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A08%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20Positive%20Differential%20Systems%20With%20Delay&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Ngoc,%20Pham%20Huu%20Anh&rft.date=2013-01&rft.volume=58&rft.issue=1&rft.spage=203&rft.epage=209&rft.pages=203-209&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2012.2203031&rft_dat=%3Cproquest_cross%3E2851337901%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c324t-7e80f64899e4452bbc608379abc5b21d7931fc79c6079a7dcc86ad1d61973a193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1244589809&rft_id=info:pmid/&rft_ieee_id=6213084&rfr_iscdi=true |