Loading…

Stability of Positive Differential Systems With Delay

We first prove an explicit criterion for positive linear time-varying differential systems with distributed delay. Then some simple criteria for exponential stability of positive linear time-invariant differential systems with delay are presented. Finally, we extend obtained results to linear differ...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on automatic control 2013-01, Vol.58 (1), p.203-209
Main Author: Ngoc, Pham Huu Anh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c324t-7e80f64899e4452bbc608379abc5b21d7931fc79c6079a7dcc86ad1d61973a193
cites cdi_FETCH-LOGICAL-c324t-7e80f64899e4452bbc608379abc5b21d7931fc79c6079a7dcc86ad1d61973a193
container_end_page 209
container_issue 1
container_start_page 203
container_title IEEE transactions on automatic control
container_volume 58
creator Ngoc, Pham Huu Anh
description We first prove an explicit criterion for positive linear time-varying differential systems with distributed delay. Then some simple criteria for exponential stability of positive linear time-invariant differential systems with delay are presented. Finally, we extend obtained results to linear differential systems with time-varying delay and to nonlinear differential systems with delay. The results given in this technical note are extensions of some recent results in ,[7],[11] and [14].
doi_str_mv 10.1109/TAC.2012.2203031
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1283651236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6213084</ieee_id><sourcerecordid>2851337901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-7e80f64899e4452bbc608379abc5b21d7931fc79c6079a7dcc86ad1d61973a193</originalsourceid><addsrcrecordid>eNpdkM1LAzEQxYMoWKt3wcuCFy9bM8luNjmW-gkFhVY8hmx2ginbbt2kwv73prR48DTM4_feDI-Qa6ATAKrul9PZhFFgE8YopxxOyAjKUuasZPyUjCgFmSsmxTm5CGGVVlEUMCLlIpratz4OWeey9y746H8we_DOYY-b6E2bLYYQcR2yTx-_sgdszXBJzpxpA14d55h8PD0uZy_5_O35dTad55azIuYVSupEIZXCoihZXVtBJa-UqW1ZM2gqxcHZSiU5iVVjrRSmgUaAqrgBxcfk7pC77bvvHYao1z5YbFuzwW4XNDDJRQmMi4Te_kNX3a7fpO8Sla5LJek-kB4o23ch9Oj0tvdr0w8aqN73qFOPet-jPvaYLDcHi0fEP1ww4FQW_BfFMmvx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1244589809</pqid></control><display><type>article</type><title>Stability of Positive Differential Systems With Delay</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Ngoc, Pham Huu Anh</creator><creatorcontrib>Ngoc, Pham Huu Anh</creatorcontrib><description>We first prove an explicit criterion for positive linear time-varying differential systems with distributed delay. Then some simple criteria for exponential stability of positive linear time-invariant differential systems with delay are presented. Finally, we extend obtained results to linear differential systems with time-varying delay and to nonlinear differential systems with delay. The results given in this technical note are extensions of some recent results in ,[7],[11] and [14].</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2012.2203031</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Automatic control ; Biological system modeling ; Criteria ; Delay ; Exponential stability ; Linear matrix inequalities ; Nonlinearity ; positive system ; Stability ; Stability criteria ; time delay system ; Time varying systems ; Vectors</subject><ispartof>IEEE transactions on automatic control, 2013-01, Vol.58 (1), p.203-209</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-7e80f64899e4452bbc608379abc5b21d7931fc79c6079a7dcc86ad1d61973a193</citedby><cites>FETCH-LOGICAL-c324t-7e80f64899e4452bbc608379abc5b21d7931fc79c6079a7dcc86ad1d61973a193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6213084$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Ngoc, Pham Huu Anh</creatorcontrib><title>Stability of Positive Differential Systems With Delay</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>We first prove an explicit criterion for positive linear time-varying differential systems with distributed delay. Then some simple criteria for exponential stability of positive linear time-invariant differential systems with delay are presented. Finally, we extend obtained results to linear differential systems with time-varying delay and to nonlinear differential systems with delay. The results given in this technical note are extensions of some recent results in ,[7],[11] and [14].</description><subject>Automatic control</subject><subject>Biological system modeling</subject><subject>Criteria</subject><subject>Delay</subject><subject>Exponential stability</subject><subject>Linear matrix inequalities</subject><subject>Nonlinearity</subject><subject>positive system</subject><subject>Stability</subject><subject>Stability criteria</subject><subject>time delay system</subject><subject>Time varying systems</subject><subject>Vectors</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpdkM1LAzEQxYMoWKt3wcuCFy9bM8luNjmW-gkFhVY8hmx2ginbbt2kwv73prR48DTM4_feDI-Qa6ATAKrul9PZhFFgE8YopxxOyAjKUuasZPyUjCgFmSsmxTm5CGGVVlEUMCLlIpratz4OWeey9y746H8we_DOYY-b6E2bLYYQcR2yTx-_sgdszXBJzpxpA14d55h8PD0uZy_5_O35dTad55azIuYVSupEIZXCoihZXVtBJa-UqW1ZM2gqxcHZSiU5iVVjrRSmgUaAqrgBxcfk7pC77bvvHYao1z5YbFuzwW4XNDDJRQmMi4Te_kNX3a7fpO8Sla5LJek-kB4o23ch9Oj0tvdr0w8aqN73qFOPet-jPvaYLDcHi0fEP1ww4FQW_BfFMmvx</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Ngoc, Pham Huu Anh</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>201301</creationdate><title>Stability of Positive Differential Systems With Delay</title><author>Ngoc, Pham Huu Anh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-7e80f64899e4452bbc608379abc5b21d7931fc79c6079a7dcc86ad1d61973a193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Automatic control</topic><topic>Biological system modeling</topic><topic>Criteria</topic><topic>Delay</topic><topic>Exponential stability</topic><topic>Linear matrix inequalities</topic><topic>Nonlinearity</topic><topic>positive system</topic><topic>Stability</topic><topic>Stability criteria</topic><topic>time delay system</topic><topic>Time varying systems</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ngoc, Pham Huu Anh</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ngoc, Pham Huu Anh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of Positive Differential Systems With Delay</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2013-01</date><risdate>2013</risdate><volume>58</volume><issue>1</issue><spage>203</spage><epage>209</epage><pages>203-209</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>We first prove an explicit criterion for positive linear time-varying differential systems with distributed delay. Then some simple criteria for exponential stability of positive linear time-invariant differential systems with delay are presented. Finally, we extend obtained results to linear differential systems with time-varying delay and to nonlinear differential systems with delay. The results given in this technical note are extensions of some recent results in ,[7],[11] and [14].</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2012.2203031</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2013-01, Vol.58 (1), p.203-209
issn 0018-9286
1558-2523
language eng
recordid cdi_proquest_miscellaneous_1283651236
source IEEE Electronic Library (IEL) Journals
subjects Automatic control
Biological system modeling
Criteria
Delay
Exponential stability
Linear matrix inequalities
Nonlinearity
positive system
Stability
Stability criteria
time delay system
Time varying systems
Vectors
title Stability of Positive Differential Systems With Delay
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A08%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20Positive%20Differential%20Systems%20With%20Delay&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Ngoc,%20Pham%20Huu%20Anh&rft.date=2013-01&rft.volume=58&rft.issue=1&rft.spage=203&rft.epage=209&rft.pages=203-209&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2012.2203031&rft_dat=%3Cproquest_cross%3E2851337901%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c324t-7e80f64899e4452bbc608379abc5b21d7931fc79c6079a7dcc86ad1d61973a193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1244589809&rft_id=info:pmid/&rft_ieee_id=6213084&rfr_iscdi=true