Loading…

Enhancement of hydrogen-storage performance of MgH2 by Mg2Ni formation and hydride-forming Ti addition

MgH2, rather than Mg, was used as a starting material in this work. A sample with a composition of MgH2–10Ni–4Ti was prepared by reactive mechanical grinding. Activation of the sample was completed after the first hydriding cycle. At n = 1, the sample desorbed 2.53 wt% H for 10 min, 3.99 wt% H for 2...

Full description

Saved in:
Bibliographic Details
Published in:International journal of hydrogen energy 2012-12, Vol.37 (23), p.18133-18139
Main Authors: Song, Myoung Youp, Kwak, Young Jun, Lee, Seong Ho, Song, Jiyoung, Mumm, Daniel R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c305t-7baa3f3009e65de4f7ab64a85055666d5b1adc06907f7a6e4b0cc81eaf16ce0a3
cites cdi_FETCH-LOGICAL-c305t-7baa3f3009e65de4f7ab64a85055666d5b1adc06907f7a6e4b0cc81eaf16ce0a3
container_end_page 18139
container_issue 23
container_start_page 18133
container_title International journal of hydrogen energy
container_volume 37
creator Song, Myoung Youp
Kwak, Young Jun
Lee, Seong Ho
Song, Jiyoung
Mumm, Daniel R.
description MgH2, rather than Mg, was used as a starting material in this work. A sample with a composition of MgH2–10Ni–4Ti was prepared by reactive mechanical grinding. Activation of the sample was completed after the first hydriding cycle. At n = 1, the sample desorbed 2.53 wt% H for 10 min, 3.99 wt% H for 20 min, 4.58 wt% H for 30 min, and 4.68 wt% H for 60 min at 593 K under 1.0 bar H2. At n = 2, the sample absorbed 3.59 wt% H for 5 min, 4.55 wt% H for 25 min, and 4.60 wt% H for 45 min at 593 K under 12 bar H2. The inverse dependence of the hydriding rate on the temperature in the initial stage and the normal dependence of the hydriding rate on the temperature in the later stage were discussed. The rate-controlling step for the dehydriding reaction of activated MgH2–10Ni–4Ti was analyzed as the chemical reaction at the hydride/α-solid solution interface. Desorbed hydrogen quantity Hd versus time t curves at 593 K under 1.0 bar H2 for activated MgH2 (at 593 K), MgH2–15Ni after RMG (at 573 K), and MgH2–10Ni–4Ti (at 593 K). [Display omitted] ► Preparation of MgH2–10Ni–4Ti by reactive mechanical grinding. ► Completion of activation after the first hydriding cycle. ► At n = 1, desorption of hydrogen of 4.68 wt% at 593 K under 1.0 bar H2 for 60 min ► Inverse dependence of hydriding rate on temperature in the initial stage. ► Analysis of rate-controlling step for dehydriding reaction of MgH2–10Ni–4Ti.
doi_str_mv 10.1016/j.ijhydene.2012.09.041
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1283656202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319912020769</els_id><sourcerecordid>1283656202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-7baa3f3009e65de4f7ab64a85055666d5b1adc06907f7a6e4b0cc81eaf16ce0a3</originalsourceid><addsrcrecordid>eNqFkE1rGzEQhkVooK6Tv1D2EuhlN6P9mF3dWkzaFNLmkpyFVhrZMrbkSpuC_320dtprTgN6n3cGPYx95lBx4Hi7rdx2czTkqaqB1xWIClp-wRZ86EXZtEP_gS2gQSgbLsRH9imlLQDvoRULZu_8RnlNe_JTEWyRF8WwJl-mKUS1puJA0Ya4n5k5_7W-r4vxmGf92xWnZHLBF8qbU9cZKudX59fFkyuUMW7Or9ilVbtE129zyZ6_3z2t7suHxx8_V98eSt1AN5X9qFRjGwBB2Blqba9GbNXQQdchoulGrowGFNDnCKkdQeuBk7IcNYFqluzLee8hhj8vlCa5d0nTbqc8hZckeT002GENdUbxjOoYUopk5SG6vYpHyUHOYuVW_hMrZ7EShMxic_Hm7YZKWu1szG5c-t-uETmiwMx9PXOUP_zXUZRJO8oejYukJ2mCe-_UK5rWkxQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283656202</pqid></control><display><type>article</type><title>Enhancement of hydrogen-storage performance of MgH2 by Mg2Ni formation and hydride-forming Ti addition</title><source>Elsevier</source><creator>Song, Myoung Youp ; Kwak, Young Jun ; Lee, Seong Ho ; Song, Jiyoung ; Mumm, Daniel R.</creator><creatorcontrib>Song, Myoung Youp ; Kwak, Young Jun ; Lee, Seong Ho ; Song, Jiyoung ; Mumm, Daniel R.</creatorcontrib><description>MgH2, rather than Mg, was used as a starting material in this work. A sample with a composition of MgH2–10Ni–4Ti was prepared by reactive mechanical grinding. Activation of the sample was completed after the first hydriding cycle. At n = 1, the sample desorbed 2.53 wt% H for 10 min, 3.99 wt% H for 20 min, 4.58 wt% H for 30 min, and 4.68 wt% H for 60 min at 593 K under 1.0 bar H2. At n = 2, the sample absorbed 3.59 wt% H for 5 min, 4.55 wt% H for 25 min, and 4.60 wt% H for 45 min at 593 K under 12 bar H2. The inverse dependence of the hydriding rate on the temperature in the initial stage and the normal dependence of the hydriding rate on the temperature in the later stage were discussed. The rate-controlling step for the dehydriding reaction of activated MgH2–10Ni–4Ti was analyzed as the chemical reaction at the hydride/α-solid solution interface. Desorbed hydrogen quantity Hd versus time t curves at 593 K under 1.0 bar H2 for activated MgH2 (at 593 K), MgH2–15Ni after RMG (at 573 K), and MgH2–10Ni–4Ti (at 593 K). [Display omitted] ► Preparation of MgH2–10Ni–4Ti by reactive mechanical grinding. ► Completion of activation after the first hydriding cycle. ► At n = 1, desorption of hydrogen of 4.68 wt% at 593 K under 1.0 bar H2 for 60 min ► Inverse dependence of hydriding rate on temperature in the initial stage. ► Analysis of rate-controlling step for dehydriding reaction of MgH2–10Ni–4Ti.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2012.09.041</identifier><identifier>CODEN: IJHEDX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Activated ; Activation ; Alternative fuels. Production and utilization ; Applied sciences ; Chemical reactions ; Energy ; Exact sciences and technology ; Fuels ; Hydrides ; Hydrogen ; Hydrogen storage ; Inverse ; Mg2Ni formation ; Ni and Ti addition ; Performance enhancement ; Reactive mechanical grinding ; Starting material MgH2 ; Titanium</subject><ispartof>International journal of hydrogen energy, 2012-12, Vol.37 (23), p.18133-18139</ispartof><rights>2012 Hydrogen Energy Publications, LLC.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-7baa3f3009e65de4f7ab64a85055666d5b1adc06907f7a6e4b0cc81eaf16ce0a3</citedby><cites>FETCH-LOGICAL-c305t-7baa3f3009e65de4f7ab64a85055666d5b1adc06907f7a6e4b0cc81eaf16ce0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26616696$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Myoung Youp</creatorcontrib><creatorcontrib>Kwak, Young Jun</creatorcontrib><creatorcontrib>Lee, Seong Ho</creatorcontrib><creatorcontrib>Song, Jiyoung</creatorcontrib><creatorcontrib>Mumm, Daniel R.</creatorcontrib><title>Enhancement of hydrogen-storage performance of MgH2 by Mg2Ni formation and hydride-forming Ti addition</title><title>International journal of hydrogen energy</title><description>MgH2, rather than Mg, was used as a starting material in this work. A sample with a composition of MgH2–10Ni–4Ti was prepared by reactive mechanical grinding. Activation of the sample was completed after the first hydriding cycle. At n = 1, the sample desorbed 2.53 wt% H for 10 min, 3.99 wt% H for 20 min, 4.58 wt% H for 30 min, and 4.68 wt% H for 60 min at 593 K under 1.0 bar H2. At n = 2, the sample absorbed 3.59 wt% H for 5 min, 4.55 wt% H for 25 min, and 4.60 wt% H for 45 min at 593 K under 12 bar H2. The inverse dependence of the hydriding rate on the temperature in the initial stage and the normal dependence of the hydriding rate on the temperature in the later stage were discussed. The rate-controlling step for the dehydriding reaction of activated MgH2–10Ni–4Ti was analyzed as the chemical reaction at the hydride/α-solid solution interface. Desorbed hydrogen quantity Hd versus time t curves at 593 K under 1.0 bar H2 for activated MgH2 (at 593 K), MgH2–15Ni after RMG (at 573 K), and MgH2–10Ni–4Ti (at 593 K). [Display omitted] ► Preparation of MgH2–10Ni–4Ti by reactive mechanical grinding. ► Completion of activation after the first hydriding cycle. ► At n = 1, desorption of hydrogen of 4.68 wt% at 593 K under 1.0 bar H2 for 60 min ► Inverse dependence of hydriding rate on temperature in the initial stage. ► Analysis of rate-controlling step for dehydriding reaction of MgH2–10Ni–4Ti.</description><subject>Activated</subject><subject>Activation</subject><subject>Alternative fuels. Production and utilization</subject><subject>Applied sciences</subject><subject>Chemical reactions</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Fuels</subject><subject>Hydrides</subject><subject>Hydrogen</subject><subject>Hydrogen storage</subject><subject>Inverse</subject><subject>Mg2Ni formation</subject><subject>Ni and Ti addition</subject><subject>Performance enhancement</subject><subject>Reactive mechanical grinding</subject><subject>Starting material MgH2</subject><subject>Titanium</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkE1rGzEQhkVooK6Tv1D2EuhlN6P9mF3dWkzaFNLmkpyFVhrZMrbkSpuC_320dtprTgN6n3cGPYx95lBx4Hi7rdx2czTkqaqB1xWIClp-wRZ86EXZtEP_gS2gQSgbLsRH9imlLQDvoRULZu_8RnlNe_JTEWyRF8WwJl-mKUS1puJA0Ya4n5k5_7W-r4vxmGf92xWnZHLBF8qbU9cZKudX59fFkyuUMW7Or9ilVbtE129zyZ6_3z2t7suHxx8_V98eSt1AN5X9qFRjGwBB2Blqba9GbNXQQdchoulGrowGFNDnCKkdQeuBk7IcNYFqluzLee8hhj8vlCa5d0nTbqc8hZckeT002GENdUbxjOoYUopk5SG6vYpHyUHOYuVW_hMrZ7EShMxic_Hm7YZKWu1szG5c-t-uETmiwMx9PXOUP_zXUZRJO8oejYukJ2mCe-_UK5rWkxQ</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Song, Myoung Youp</creator><creator>Kwak, Young Jun</creator><creator>Lee, Seong Ho</creator><creator>Song, Jiyoung</creator><creator>Mumm, Daniel R.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20121201</creationdate><title>Enhancement of hydrogen-storage performance of MgH2 by Mg2Ni formation and hydride-forming Ti addition</title><author>Song, Myoung Youp ; Kwak, Young Jun ; Lee, Seong Ho ; Song, Jiyoung ; Mumm, Daniel R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-7baa3f3009e65de4f7ab64a85055666d5b1adc06907f7a6e4b0cc81eaf16ce0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Activated</topic><topic>Activation</topic><topic>Alternative fuels. Production and utilization</topic><topic>Applied sciences</topic><topic>Chemical reactions</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Fuels</topic><topic>Hydrides</topic><topic>Hydrogen</topic><topic>Hydrogen storage</topic><topic>Inverse</topic><topic>Mg2Ni formation</topic><topic>Ni and Ti addition</topic><topic>Performance enhancement</topic><topic>Reactive mechanical grinding</topic><topic>Starting material MgH2</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Myoung Youp</creatorcontrib><creatorcontrib>Kwak, Young Jun</creatorcontrib><creatorcontrib>Lee, Seong Ho</creatorcontrib><creatorcontrib>Song, Jiyoung</creatorcontrib><creatorcontrib>Mumm, Daniel R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Myoung Youp</au><au>Kwak, Young Jun</au><au>Lee, Seong Ho</au><au>Song, Jiyoung</au><au>Mumm, Daniel R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancement of hydrogen-storage performance of MgH2 by Mg2Ni formation and hydride-forming Ti addition</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2012-12-01</date><risdate>2012</risdate><volume>37</volume><issue>23</issue><spage>18133</spage><epage>18139</epage><pages>18133-18139</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><coden>IJHEDX</coden><abstract>MgH2, rather than Mg, was used as a starting material in this work. A sample with a composition of MgH2–10Ni–4Ti was prepared by reactive mechanical grinding. Activation of the sample was completed after the first hydriding cycle. At n = 1, the sample desorbed 2.53 wt% H for 10 min, 3.99 wt% H for 20 min, 4.58 wt% H for 30 min, and 4.68 wt% H for 60 min at 593 K under 1.0 bar H2. At n = 2, the sample absorbed 3.59 wt% H for 5 min, 4.55 wt% H for 25 min, and 4.60 wt% H for 45 min at 593 K under 12 bar H2. The inverse dependence of the hydriding rate on the temperature in the initial stage and the normal dependence of the hydriding rate on the temperature in the later stage were discussed. The rate-controlling step for the dehydriding reaction of activated MgH2–10Ni–4Ti was analyzed as the chemical reaction at the hydride/α-solid solution interface. Desorbed hydrogen quantity Hd versus time t curves at 593 K under 1.0 bar H2 for activated MgH2 (at 593 K), MgH2–15Ni after RMG (at 573 K), and MgH2–10Ni–4Ti (at 593 K). [Display omitted] ► Preparation of MgH2–10Ni–4Ti by reactive mechanical grinding. ► Completion of activation after the first hydriding cycle. ► At n = 1, desorption of hydrogen of 4.68 wt% at 593 K under 1.0 bar H2 for 60 min ► Inverse dependence of hydriding rate on temperature in the initial stage. ► Analysis of rate-controlling step for dehydriding reaction of MgH2–10Ni–4Ti.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2012.09.041</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-3199
ispartof International journal of hydrogen energy, 2012-12, Vol.37 (23), p.18133-18139
issn 0360-3199
1879-3487
language eng
recordid cdi_proquest_miscellaneous_1283656202
source Elsevier
subjects Activated
Activation
Alternative fuels. Production and utilization
Applied sciences
Chemical reactions
Energy
Exact sciences and technology
Fuels
Hydrides
Hydrogen
Hydrogen storage
Inverse
Mg2Ni formation
Ni and Ti addition
Performance enhancement
Reactive mechanical grinding
Starting material MgH2
Titanium
title Enhancement of hydrogen-storage performance of MgH2 by Mg2Ni formation and hydride-forming Ti addition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A47%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancement%20of%20hydrogen-storage%20performance%20of%20MgH2%20by%20Mg2Ni%20formation%20and%20hydride-forming%20Ti%20addition&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=Song,%20Myoung%20Youp&rft.date=2012-12-01&rft.volume=37&rft.issue=23&rft.spage=18133&rft.epage=18139&rft.pages=18133-18139&rft.issn=0360-3199&rft.eissn=1879-3487&rft.coden=IJHEDX&rft_id=info:doi/10.1016/j.ijhydene.2012.09.041&rft_dat=%3Cproquest_cross%3E1283656202%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c305t-7baa3f3009e65de4f7ab64a85055666d5b1adc06907f7a6e4b0cc81eaf16ce0a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1283656202&rft_id=info:pmid/&rfr_iscdi=true