Loading…
Enhancement of hydrogen-storage performance of MgH2 by Mg2Ni formation and hydride-forming Ti addition
MgH2, rather than Mg, was used as a starting material in this work. A sample with a composition of MgH2–10Ni–4Ti was prepared by reactive mechanical grinding. Activation of the sample was completed after the first hydriding cycle. At n = 1, the sample desorbed 2.53 wt% H for 10 min, 3.99 wt% H for 2...
Saved in:
Published in: | International journal of hydrogen energy 2012-12, Vol.37 (23), p.18133-18139 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c305t-7baa3f3009e65de4f7ab64a85055666d5b1adc06907f7a6e4b0cc81eaf16ce0a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c305t-7baa3f3009e65de4f7ab64a85055666d5b1adc06907f7a6e4b0cc81eaf16ce0a3 |
container_end_page | 18139 |
container_issue | 23 |
container_start_page | 18133 |
container_title | International journal of hydrogen energy |
container_volume | 37 |
creator | Song, Myoung Youp Kwak, Young Jun Lee, Seong Ho Song, Jiyoung Mumm, Daniel R. |
description | MgH2, rather than Mg, was used as a starting material in this work. A sample with a composition of MgH2–10Ni–4Ti was prepared by reactive mechanical grinding. Activation of the sample was completed after the first hydriding cycle. At n = 1, the sample desorbed 2.53 wt% H for 10 min, 3.99 wt% H for 20 min, 4.58 wt% H for 30 min, and 4.68 wt% H for 60 min at 593 K under 1.0 bar H2. At n = 2, the sample absorbed 3.59 wt% H for 5 min, 4.55 wt% H for 25 min, and 4.60 wt% H for 45 min at 593 K under 12 bar H2. The inverse dependence of the hydriding rate on the temperature in the initial stage and the normal dependence of the hydriding rate on the temperature in the later stage were discussed. The rate-controlling step for the dehydriding reaction of activated MgH2–10Ni–4Ti was analyzed as the chemical reaction at the hydride/α-solid solution interface.
Desorbed hydrogen quantity Hd versus time t curves at 593 K under 1.0 bar H2 for activated MgH2 (at 593 K), MgH2–15Ni after RMG (at 573 K), and MgH2–10Ni–4Ti (at 593 K). [Display omitted]
► Preparation of MgH2–10Ni–4Ti by reactive mechanical grinding. ► Completion of activation after the first hydriding cycle. ► At n = 1, desorption of hydrogen of 4.68 wt% at 593 K under 1.0 bar H2 for 60 min ► Inverse dependence of hydriding rate on temperature in the initial stage. ► Analysis of rate-controlling step for dehydriding reaction of MgH2–10Ni–4Ti. |
doi_str_mv | 10.1016/j.ijhydene.2012.09.041 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1283656202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319912020769</els_id><sourcerecordid>1283656202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-7baa3f3009e65de4f7ab64a85055666d5b1adc06907f7a6e4b0cc81eaf16ce0a3</originalsourceid><addsrcrecordid>eNqFkE1rGzEQhkVooK6Tv1D2EuhlN6P9mF3dWkzaFNLmkpyFVhrZMrbkSpuC_320dtprTgN6n3cGPYx95lBx4Hi7rdx2czTkqaqB1xWIClp-wRZ86EXZtEP_gS2gQSgbLsRH9imlLQDvoRULZu_8RnlNe_JTEWyRF8WwJl-mKUS1puJA0Ya4n5k5_7W-r4vxmGf92xWnZHLBF8qbU9cZKudX59fFkyuUMW7Or9ilVbtE129zyZ6_3z2t7suHxx8_V98eSt1AN5X9qFRjGwBB2Blqba9GbNXQQdchoulGrowGFNDnCKkdQeuBk7IcNYFqluzLee8hhj8vlCa5d0nTbqc8hZckeT002GENdUbxjOoYUopk5SG6vYpHyUHOYuVW_hMrZ7EShMxic_Hm7YZKWu1szG5c-t-uETmiwMx9PXOUP_zXUZRJO8oejYukJ2mCe-_UK5rWkxQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283656202</pqid></control><display><type>article</type><title>Enhancement of hydrogen-storage performance of MgH2 by Mg2Ni formation and hydride-forming Ti addition</title><source>Elsevier</source><creator>Song, Myoung Youp ; Kwak, Young Jun ; Lee, Seong Ho ; Song, Jiyoung ; Mumm, Daniel R.</creator><creatorcontrib>Song, Myoung Youp ; Kwak, Young Jun ; Lee, Seong Ho ; Song, Jiyoung ; Mumm, Daniel R.</creatorcontrib><description>MgH2, rather than Mg, was used as a starting material in this work. A sample with a composition of MgH2–10Ni–4Ti was prepared by reactive mechanical grinding. Activation of the sample was completed after the first hydriding cycle. At n = 1, the sample desorbed 2.53 wt% H for 10 min, 3.99 wt% H for 20 min, 4.58 wt% H for 30 min, and 4.68 wt% H for 60 min at 593 K under 1.0 bar H2. At n = 2, the sample absorbed 3.59 wt% H for 5 min, 4.55 wt% H for 25 min, and 4.60 wt% H for 45 min at 593 K under 12 bar H2. The inverse dependence of the hydriding rate on the temperature in the initial stage and the normal dependence of the hydriding rate on the temperature in the later stage were discussed. The rate-controlling step for the dehydriding reaction of activated MgH2–10Ni–4Ti was analyzed as the chemical reaction at the hydride/α-solid solution interface.
Desorbed hydrogen quantity Hd versus time t curves at 593 K under 1.0 bar H2 for activated MgH2 (at 593 K), MgH2–15Ni after RMG (at 573 K), and MgH2–10Ni–4Ti (at 593 K). [Display omitted]
► Preparation of MgH2–10Ni–4Ti by reactive mechanical grinding. ► Completion of activation after the first hydriding cycle. ► At n = 1, desorption of hydrogen of 4.68 wt% at 593 K under 1.0 bar H2 for 60 min ► Inverse dependence of hydriding rate on temperature in the initial stage. ► Analysis of rate-controlling step for dehydriding reaction of MgH2–10Ni–4Ti.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2012.09.041</identifier><identifier>CODEN: IJHEDX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Activated ; Activation ; Alternative fuels. Production and utilization ; Applied sciences ; Chemical reactions ; Energy ; Exact sciences and technology ; Fuels ; Hydrides ; Hydrogen ; Hydrogen storage ; Inverse ; Mg2Ni formation ; Ni and Ti addition ; Performance enhancement ; Reactive mechanical grinding ; Starting material MgH2 ; Titanium</subject><ispartof>International journal of hydrogen energy, 2012-12, Vol.37 (23), p.18133-18139</ispartof><rights>2012 Hydrogen Energy Publications, LLC.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-7baa3f3009e65de4f7ab64a85055666d5b1adc06907f7a6e4b0cc81eaf16ce0a3</citedby><cites>FETCH-LOGICAL-c305t-7baa3f3009e65de4f7ab64a85055666d5b1adc06907f7a6e4b0cc81eaf16ce0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26616696$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Myoung Youp</creatorcontrib><creatorcontrib>Kwak, Young Jun</creatorcontrib><creatorcontrib>Lee, Seong Ho</creatorcontrib><creatorcontrib>Song, Jiyoung</creatorcontrib><creatorcontrib>Mumm, Daniel R.</creatorcontrib><title>Enhancement of hydrogen-storage performance of MgH2 by Mg2Ni formation and hydride-forming Ti addition</title><title>International journal of hydrogen energy</title><description>MgH2, rather than Mg, was used as a starting material in this work. A sample with a composition of MgH2–10Ni–4Ti was prepared by reactive mechanical grinding. Activation of the sample was completed after the first hydriding cycle. At n = 1, the sample desorbed 2.53 wt% H for 10 min, 3.99 wt% H for 20 min, 4.58 wt% H for 30 min, and 4.68 wt% H for 60 min at 593 K under 1.0 bar H2. At n = 2, the sample absorbed 3.59 wt% H for 5 min, 4.55 wt% H for 25 min, and 4.60 wt% H for 45 min at 593 K under 12 bar H2. The inverse dependence of the hydriding rate on the temperature in the initial stage and the normal dependence of the hydriding rate on the temperature in the later stage were discussed. The rate-controlling step for the dehydriding reaction of activated MgH2–10Ni–4Ti was analyzed as the chemical reaction at the hydride/α-solid solution interface.
Desorbed hydrogen quantity Hd versus time t curves at 593 K under 1.0 bar H2 for activated MgH2 (at 593 K), MgH2–15Ni after RMG (at 573 K), and MgH2–10Ni–4Ti (at 593 K). [Display omitted]
► Preparation of MgH2–10Ni–4Ti by reactive mechanical grinding. ► Completion of activation after the first hydriding cycle. ► At n = 1, desorption of hydrogen of 4.68 wt% at 593 K under 1.0 bar H2 for 60 min ► Inverse dependence of hydriding rate on temperature in the initial stage. ► Analysis of rate-controlling step for dehydriding reaction of MgH2–10Ni–4Ti.</description><subject>Activated</subject><subject>Activation</subject><subject>Alternative fuels. Production and utilization</subject><subject>Applied sciences</subject><subject>Chemical reactions</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Fuels</subject><subject>Hydrides</subject><subject>Hydrogen</subject><subject>Hydrogen storage</subject><subject>Inverse</subject><subject>Mg2Ni formation</subject><subject>Ni and Ti addition</subject><subject>Performance enhancement</subject><subject>Reactive mechanical grinding</subject><subject>Starting material MgH2</subject><subject>Titanium</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkE1rGzEQhkVooK6Tv1D2EuhlN6P9mF3dWkzaFNLmkpyFVhrZMrbkSpuC_320dtprTgN6n3cGPYx95lBx4Hi7rdx2czTkqaqB1xWIClp-wRZ86EXZtEP_gS2gQSgbLsRH9imlLQDvoRULZu_8RnlNe_JTEWyRF8WwJl-mKUS1puJA0Ya4n5k5_7W-r4vxmGf92xWnZHLBF8qbU9cZKudX59fFkyuUMW7Or9ilVbtE129zyZ6_3z2t7suHxx8_V98eSt1AN5X9qFRjGwBB2Blqba9GbNXQQdchoulGrowGFNDnCKkdQeuBk7IcNYFqluzLee8hhj8vlCa5d0nTbqc8hZckeT002GENdUbxjOoYUopk5SG6vYpHyUHOYuVW_hMrZ7EShMxic_Hm7YZKWu1szG5c-t-uETmiwMx9PXOUP_zXUZRJO8oejYukJ2mCe-_UK5rWkxQ</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Song, Myoung Youp</creator><creator>Kwak, Young Jun</creator><creator>Lee, Seong Ho</creator><creator>Song, Jiyoung</creator><creator>Mumm, Daniel R.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20121201</creationdate><title>Enhancement of hydrogen-storage performance of MgH2 by Mg2Ni formation and hydride-forming Ti addition</title><author>Song, Myoung Youp ; Kwak, Young Jun ; Lee, Seong Ho ; Song, Jiyoung ; Mumm, Daniel R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-7baa3f3009e65de4f7ab64a85055666d5b1adc06907f7a6e4b0cc81eaf16ce0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Activated</topic><topic>Activation</topic><topic>Alternative fuels. Production and utilization</topic><topic>Applied sciences</topic><topic>Chemical reactions</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Fuels</topic><topic>Hydrides</topic><topic>Hydrogen</topic><topic>Hydrogen storage</topic><topic>Inverse</topic><topic>Mg2Ni formation</topic><topic>Ni and Ti addition</topic><topic>Performance enhancement</topic><topic>Reactive mechanical grinding</topic><topic>Starting material MgH2</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Myoung Youp</creatorcontrib><creatorcontrib>Kwak, Young Jun</creatorcontrib><creatorcontrib>Lee, Seong Ho</creatorcontrib><creatorcontrib>Song, Jiyoung</creatorcontrib><creatorcontrib>Mumm, Daniel R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Myoung Youp</au><au>Kwak, Young Jun</au><au>Lee, Seong Ho</au><au>Song, Jiyoung</au><au>Mumm, Daniel R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancement of hydrogen-storage performance of MgH2 by Mg2Ni formation and hydride-forming Ti addition</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2012-12-01</date><risdate>2012</risdate><volume>37</volume><issue>23</issue><spage>18133</spage><epage>18139</epage><pages>18133-18139</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><coden>IJHEDX</coden><abstract>MgH2, rather than Mg, was used as a starting material in this work. A sample with a composition of MgH2–10Ni–4Ti was prepared by reactive mechanical grinding. Activation of the sample was completed after the first hydriding cycle. At n = 1, the sample desorbed 2.53 wt% H for 10 min, 3.99 wt% H for 20 min, 4.58 wt% H for 30 min, and 4.68 wt% H for 60 min at 593 K under 1.0 bar H2. At n = 2, the sample absorbed 3.59 wt% H for 5 min, 4.55 wt% H for 25 min, and 4.60 wt% H for 45 min at 593 K under 12 bar H2. The inverse dependence of the hydriding rate on the temperature in the initial stage and the normal dependence of the hydriding rate on the temperature in the later stage were discussed. The rate-controlling step for the dehydriding reaction of activated MgH2–10Ni–4Ti was analyzed as the chemical reaction at the hydride/α-solid solution interface.
Desorbed hydrogen quantity Hd versus time t curves at 593 K under 1.0 bar H2 for activated MgH2 (at 593 K), MgH2–15Ni after RMG (at 573 K), and MgH2–10Ni–4Ti (at 593 K). [Display omitted]
► Preparation of MgH2–10Ni–4Ti by reactive mechanical grinding. ► Completion of activation after the first hydriding cycle. ► At n = 1, desorption of hydrogen of 4.68 wt% at 593 K under 1.0 bar H2 for 60 min ► Inverse dependence of hydriding rate on temperature in the initial stage. ► Analysis of rate-controlling step for dehydriding reaction of MgH2–10Ni–4Ti.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2012.09.041</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-3199 |
ispartof | International journal of hydrogen energy, 2012-12, Vol.37 (23), p.18133-18139 |
issn | 0360-3199 1879-3487 |
language | eng |
recordid | cdi_proquest_miscellaneous_1283656202 |
source | Elsevier |
subjects | Activated Activation Alternative fuels. Production and utilization Applied sciences Chemical reactions Energy Exact sciences and technology Fuels Hydrides Hydrogen Hydrogen storage Inverse Mg2Ni formation Ni and Ti addition Performance enhancement Reactive mechanical grinding Starting material MgH2 Titanium |
title | Enhancement of hydrogen-storage performance of MgH2 by Mg2Ni formation and hydride-forming Ti addition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A47%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancement%20of%20hydrogen-storage%20performance%20of%20MgH2%20by%20Mg2Ni%20formation%20and%20hydride-forming%20Ti%20addition&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=Song,%20Myoung%20Youp&rft.date=2012-12-01&rft.volume=37&rft.issue=23&rft.spage=18133&rft.epage=18139&rft.pages=18133-18139&rft.issn=0360-3199&rft.eissn=1879-3487&rft.coden=IJHEDX&rft_id=info:doi/10.1016/j.ijhydene.2012.09.041&rft_dat=%3Cproquest_cross%3E1283656202%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c305t-7baa3f3009e65de4f7ab64a85055666d5b1adc06907f7a6e4b0cc81eaf16ce0a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1283656202&rft_id=info:pmid/&rfr_iscdi=true |