Loading…
Multiphoton laser ionization for energy conversion in barium vapor
We have studied the ion detection of barium atoms in special heated ovens with a tungsten rod in the middle of the stainless steel tube. The tungsten rod was heated indirectly by the oven body heaters. A bias voltage between the cell body and the tungsten rod of 9V was used to collect electrons, aft...
Saved in:
Published in: | Optics communications 2013-03, Vol.290, p.95-99 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We have studied the ion detection of barium atoms in special heated ovens with a tungsten rod in the middle of the stainless steel tube. The tungsten rod was heated indirectly by the oven body heaters. A bias voltage between the cell body and the tungsten rod of 9V was used to collect electrons, after the barium ions had been created. However, we could collect the electrons even without the bias voltage, although with ten times less efficiency. We studied the conditions for the successful bias-less thermionic signal detection using excimer/dye laser two-photon excitation of Rydberg states below and above the first ionization limit (two-photon wavelength at 475.79nm). We employed a hot-pipe oven and heat-pipe oven (with inserted mesh) in order to generate different barium vapor distributions inside the oven. The thermionic signal increased by a factor of two under heat-pipe oven conditions. |
---|---|
ISSN: | 0030-4018 1873-0310 |
DOI: | 10.1016/j.optcom.2012.10.031 |