Loading…
A multiscale method for micro/nano flows of high aspect ratio
We develop a new multiscale scheme for simulating micro/nano flows of high aspect ratio in the flow direction, e.g. within long ducts, tubes, or channels, of varying section. The scheme couples conventional hydrodynamic conservation equations for mass and momentum-flux with molecular dynamics (MD) i...
Saved in:
Published in: | Journal of computational physics 2013, Vol.233, p.400-413 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c572t-b5cd46a47b6ee053741ef956b7cc6e12774e0b26446f18f5250383627089b7403 |
---|---|
cites | cdi_FETCH-LOGICAL-c572t-b5cd46a47b6ee053741ef956b7cc6e12774e0b26446f18f5250383627089b7403 |
container_end_page | 413 |
container_issue | |
container_start_page | 400 |
container_title | Journal of computational physics |
container_volume | 233 |
creator | Borg, Matthew K. Lockerby, Duncan A. Reese, Jason M. |
description | We develop a new multiscale scheme for simulating micro/nano flows of high aspect ratio in the flow direction, e.g. within long ducts, tubes, or channels, of varying section. The scheme couples conventional hydrodynamic conservation equations for mass and momentum-flux with molecular dynamics (MD) in a unified framework. The method is very much different from common ‘domain-decomposition’ hybrid methods, and is more related to micro-resolution methods, such as the Heterogeneous Multiscale Method. We optimise the use of the computationally-costly MD solvers by applying them only at a limited number of streamwise-distributed cross-sections of the macroscale geometry. The greater the streamwise scale of the geometry, the more significant is the computational speed-up when compared to a full MD simulation. We test our new multiscale method on the case of a converging/diverging nanochannel conveying a simple Lennard–Jones liquid. We validate the results from our simulations by comparing them to a full MD simulation of the same test case. |
doi_str_mv | 10.1016/j.jcp.2012.09.009 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1283669631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999112005402</els_id><sourcerecordid>1283669631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c572t-b5cd46a47b6ee053741ef956b7cc6e12774e0b26446f18f5250383627089b7403</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwA9i8ILEknJ3EjoUYEOJLqsQCs-W4Z-oqiYudgvj3uCpiZLrluffeewg5Z1AyYOJqXa7tpuTAeAmqBFAHZMZAQcElE4dkBsBZoZRix-QkpTUAtE3dzsjNLR22_eSTNT3SAadVWFIXIh28jeFqNGOgrg9fiQZHV_59RU3aoJ1oNJMPp-TImT7h2e-ck7eH-9e7p2Lx8vh8d7sobCP5VHSNXdbC1LITiNBUsmboVCM6aa1AxqWsETou6lo41rqGN1C1leASWtXJGqo5udznbmL42GKa9JAbY9-bEcM2acYzLpSoWEbZHs31U4ro9Cb6wcRvzUDvVOm1zqr0TpUGpbOqvHPxG292Hlw0o_Xpb5ELCRyaXY3rPYf510-PUSfrcbS49DE70cvg_7nyA9LbfAk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283669631</pqid></control><display><type>article</type><title>A multiscale method for micro/nano flows of high aspect ratio</title><source>ScienceDirect Freedom Collection</source><creator>Borg, Matthew K. ; Lockerby, Duncan A. ; Reese, Jason M.</creator><creatorcontrib>Borg, Matthew K. ; Lockerby, Duncan A. ; Reese, Jason M.</creatorcontrib><description>We develop a new multiscale scheme for simulating micro/nano flows of high aspect ratio in the flow direction, e.g. within long ducts, tubes, or channels, of varying section. The scheme couples conventional hydrodynamic conservation equations for mass and momentum-flux with molecular dynamics (MD) in a unified framework. The method is very much different from common ‘domain-decomposition’ hybrid methods, and is more related to micro-resolution methods, such as the Heterogeneous Multiscale Method. We optimise the use of the computationally-costly MD solvers by applying them only at a limited number of streamwise-distributed cross-sections of the macroscale geometry. The greater the streamwise scale of the geometry, the more significant is the computational speed-up when compared to a full MD simulation. We test our new multiscale method on the case of a converging/diverging nanochannel conveying a simple Lennard–Jones liquid. We validate the results from our simulations by comparing them to a full MD simulation of the same test case.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2012.09.009</identifier><identifier>CODEN: JCTPAH</identifier><language>eng</language><publisher>Kidlington: Elsevier Inc</publisher><subject>Channels ; Computation ; Computational techniques ; Computer simulation ; Coupled solvers ; Exact sciences and technology ; High aspect ratio ; Hybrid method ; Mathematical methods in physics ; Molecular dynamics ; Multiscale methods ; Multiscale simulations ; Nanocomposites ; Nanomaterials ; Nanostructure ; Physics ; Scale-separation</subject><ispartof>Journal of computational physics, 2013, Vol.233, p.400-413</ispartof><rights>2012 Elsevier Inc.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c572t-b5cd46a47b6ee053741ef956b7cc6e12774e0b26446f18f5250383627089b7403</citedby><cites>FETCH-LOGICAL-c572t-b5cd46a47b6ee053741ef956b7cc6e12774e0b26446f18f5250383627089b7403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26702050$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Borg, Matthew K.</creatorcontrib><creatorcontrib>Lockerby, Duncan A.</creatorcontrib><creatorcontrib>Reese, Jason M.</creatorcontrib><title>A multiscale method for micro/nano flows of high aspect ratio</title><title>Journal of computational physics</title><description>We develop a new multiscale scheme for simulating micro/nano flows of high aspect ratio in the flow direction, e.g. within long ducts, tubes, or channels, of varying section. The scheme couples conventional hydrodynamic conservation equations for mass and momentum-flux with molecular dynamics (MD) in a unified framework. The method is very much different from common ‘domain-decomposition’ hybrid methods, and is more related to micro-resolution methods, such as the Heterogeneous Multiscale Method. We optimise the use of the computationally-costly MD solvers by applying them only at a limited number of streamwise-distributed cross-sections of the macroscale geometry. The greater the streamwise scale of the geometry, the more significant is the computational speed-up when compared to a full MD simulation. We test our new multiscale method on the case of a converging/diverging nanochannel conveying a simple Lennard–Jones liquid. We validate the results from our simulations by comparing them to a full MD simulation of the same test case.</description><subject>Channels</subject><subject>Computation</subject><subject>Computational techniques</subject><subject>Computer simulation</subject><subject>Coupled solvers</subject><subject>Exact sciences and technology</subject><subject>High aspect ratio</subject><subject>Hybrid method</subject><subject>Mathematical methods in physics</subject><subject>Molecular dynamics</subject><subject>Multiscale methods</subject><subject>Multiscale simulations</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Physics</subject><subject>Scale-separation</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwA9i8ILEknJ3EjoUYEOJLqsQCs-W4Z-oqiYudgvj3uCpiZLrluffeewg5Z1AyYOJqXa7tpuTAeAmqBFAHZMZAQcElE4dkBsBZoZRix-QkpTUAtE3dzsjNLR22_eSTNT3SAadVWFIXIh28jeFqNGOgrg9fiQZHV_59RU3aoJ1oNJMPp-TImT7h2e-ck7eH-9e7p2Lx8vh8d7sobCP5VHSNXdbC1LITiNBUsmboVCM6aa1AxqWsETou6lo41rqGN1C1leASWtXJGqo5udznbmL42GKa9JAbY9-bEcM2acYzLpSoWEbZHs31U4ro9Cb6wcRvzUDvVOm1zqr0TpUGpbOqvHPxG292Hlw0o_Xpb5ELCRyaXY3rPYf510-PUSfrcbS49DE70cvg_7nyA9LbfAk</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Borg, Matthew K.</creator><creator>Lockerby, Duncan A.</creator><creator>Reese, Jason M.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2013</creationdate><title>A multiscale method for micro/nano flows of high aspect ratio</title><author>Borg, Matthew K. ; Lockerby, Duncan A. ; Reese, Jason M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c572t-b5cd46a47b6ee053741ef956b7cc6e12774e0b26446f18f5250383627089b7403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Channels</topic><topic>Computation</topic><topic>Computational techniques</topic><topic>Computer simulation</topic><topic>Coupled solvers</topic><topic>Exact sciences and technology</topic><topic>High aspect ratio</topic><topic>Hybrid method</topic><topic>Mathematical methods in physics</topic><topic>Molecular dynamics</topic><topic>Multiscale methods</topic><topic>Multiscale simulations</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Physics</topic><topic>Scale-separation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borg, Matthew K.</creatorcontrib><creatorcontrib>Lockerby, Duncan A.</creatorcontrib><creatorcontrib>Reese, Jason M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borg, Matthew K.</au><au>Lockerby, Duncan A.</au><au>Reese, Jason M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multiscale method for micro/nano flows of high aspect ratio</atitle><jtitle>Journal of computational physics</jtitle><date>2013</date><risdate>2013</risdate><volume>233</volume><spage>400</spage><epage>413</epage><pages>400-413</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><coden>JCTPAH</coden><abstract>We develop a new multiscale scheme for simulating micro/nano flows of high aspect ratio in the flow direction, e.g. within long ducts, tubes, or channels, of varying section. The scheme couples conventional hydrodynamic conservation equations for mass and momentum-flux with molecular dynamics (MD) in a unified framework. The method is very much different from common ‘domain-decomposition’ hybrid methods, and is more related to micro-resolution methods, such as the Heterogeneous Multiscale Method. We optimise the use of the computationally-costly MD solvers by applying them only at a limited number of streamwise-distributed cross-sections of the macroscale geometry. The greater the streamwise scale of the geometry, the more significant is the computational speed-up when compared to a full MD simulation. We test our new multiscale method on the case of a converging/diverging nanochannel conveying a simple Lennard–Jones liquid. We validate the results from our simulations by comparing them to a full MD simulation of the same test case.</abstract><cop>Kidlington</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2012.09.009</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2013, Vol.233, p.400-413 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_proquest_miscellaneous_1283669631 |
source | ScienceDirect Freedom Collection |
subjects | Channels Computation Computational techniques Computer simulation Coupled solvers Exact sciences and technology High aspect ratio Hybrid method Mathematical methods in physics Molecular dynamics Multiscale methods Multiscale simulations Nanocomposites Nanomaterials Nanostructure Physics Scale-separation |
title | A multiscale method for micro/nano flows of high aspect ratio |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T20%3A17%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multiscale%20method%20for%20micro/nano%20flows%20of%20high%20aspect%20ratio&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Borg,%20Matthew%20K.&rft.date=2013&rft.volume=233&rft.spage=400&rft.epage=413&rft.pages=400-413&rft.issn=0021-9991&rft.eissn=1090-2716&rft.coden=JCTPAH&rft_id=info:doi/10.1016/j.jcp.2012.09.009&rft_dat=%3Cproquest_cross%3E1283669631%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c572t-b5cd46a47b6ee053741ef956b7cc6e12774e0b26446f18f5250383627089b7403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1283669631&rft_id=info:pmid/&rfr_iscdi=true |