Loading…

A multiscale method for micro/nano flows of high aspect ratio

We develop a new multiscale scheme for simulating micro/nano flows of high aspect ratio in the flow direction, e.g. within long ducts, tubes, or channels, of varying section. The scheme couples conventional hydrodynamic conservation equations for mass and momentum-flux with molecular dynamics (MD) i...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational physics 2013, Vol.233, p.400-413
Main Authors: Borg, Matthew K., Lockerby, Duncan A., Reese, Jason M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c572t-b5cd46a47b6ee053741ef956b7cc6e12774e0b26446f18f5250383627089b7403
cites cdi_FETCH-LOGICAL-c572t-b5cd46a47b6ee053741ef956b7cc6e12774e0b26446f18f5250383627089b7403
container_end_page 413
container_issue
container_start_page 400
container_title Journal of computational physics
container_volume 233
creator Borg, Matthew K.
Lockerby, Duncan A.
Reese, Jason M.
description We develop a new multiscale scheme for simulating micro/nano flows of high aspect ratio in the flow direction, e.g. within long ducts, tubes, or channels, of varying section. The scheme couples conventional hydrodynamic conservation equations for mass and momentum-flux with molecular dynamics (MD) in a unified framework. The method is very much different from common ‘domain-decomposition’ hybrid methods, and is more related to micro-resolution methods, such as the Heterogeneous Multiscale Method. We optimise the use of the computationally-costly MD solvers by applying them only at a limited number of streamwise-distributed cross-sections of the macroscale geometry. The greater the streamwise scale of the geometry, the more significant is the computational speed-up when compared to a full MD simulation. We test our new multiscale method on the case of a converging/diverging nanochannel conveying a simple Lennard–Jones liquid. We validate the results from our simulations by comparing them to a full MD simulation of the same test case.
doi_str_mv 10.1016/j.jcp.2012.09.009
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1283669631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999112005402</els_id><sourcerecordid>1283669631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c572t-b5cd46a47b6ee053741ef956b7cc6e12774e0b26446f18f5250383627089b7403</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwA9i8ILEknJ3EjoUYEOJLqsQCs-W4Z-oqiYudgvj3uCpiZLrluffeewg5Z1AyYOJqXa7tpuTAeAmqBFAHZMZAQcElE4dkBsBZoZRix-QkpTUAtE3dzsjNLR22_eSTNT3SAadVWFIXIh28jeFqNGOgrg9fiQZHV_59RU3aoJ1oNJMPp-TImT7h2e-ck7eH-9e7p2Lx8vh8d7sobCP5VHSNXdbC1LITiNBUsmboVCM6aa1AxqWsETou6lo41rqGN1C1leASWtXJGqo5udznbmL42GKa9JAbY9-bEcM2acYzLpSoWEbZHs31U4ro9Cb6wcRvzUDvVOm1zqr0TpUGpbOqvHPxG292Hlw0o_Xpb5ELCRyaXY3rPYf510-PUSfrcbS49DE70cvg_7nyA9LbfAk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283669631</pqid></control><display><type>article</type><title>A multiscale method for micro/nano flows of high aspect ratio</title><source>ScienceDirect Freedom Collection</source><creator>Borg, Matthew K. ; Lockerby, Duncan A. ; Reese, Jason M.</creator><creatorcontrib>Borg, Matthew K. ; Lockerby, Duncan A. ; Reese, Jason M.</creatorcontrib><description>We develop a new multiscale scheme for simulating micro/nano flows of high aspect ratio in the flow direction, e.g. within long ducts, tubes, or channels, of varying section. The scheme couples conventional hydrodynamic conservation equations for mass and momentum-flux with molecular dynamics (MD) in a unified framework. The method is very much different from common ‘domain-decomposition’ hybrid methods, and is more related to micro-resolution methods, such as the Heterogeneous Multiscale Method. We optimise the use of the computationally-costly MD solvers by applying them only at a limited number of streamwise-distributed cross-sections of the macroscale geometry. The greater the streamwise scale of the geometry, the more significant is the computational speed-up when compared to a full MD simulation. We test our new multiscale method on the case of a converging/diverging nanochannel conveying a simple Lennard–Jones liquid. We validate the results from our simulations by comparing them to a full MD simulation of the same test case.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2012.09.009</identifier><identifier>CODEN: JCTPAH</identifier><language>eng</language><publisher>Kidlington: Elsevier Inc</publisher><subject>Channels ; Computation ; Computational techniques ; Computer simulation ; Coupled solvers ; Exact sciences and technology ; High aspect ratio ; Hybrid method ; Mathematical methods in physics ; Molecular dynamics ; Multiscale methods ; Multiscale simulations ; Nanocomposites ; Nanomaterials ; Nanostructure ; Physics ; Scale-separation</subject><ispartof>Journal of computational physics, 2013, Vol.233, p.400-413</ispartof><rights>2012 Elsevier Inc.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c572t-b5cd46a47b6ee053741ef956b7cc6e12774e0b26446f18f5250383627089b7403</citedby><cites>FETCH-LOGICAL-c572t-b5cd46a47b6ee053741ef956b7cc6e12774e0b26446f18f5250383627089b7403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26702050$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Borg, Matthew K.</creatorcontrib><creatorcontrib>Lockerby, Duncan A.</creatorcontrib><creatorcontrib>Reese, Jason M.</creatorcontrib><title>A multiscale method for micro/nano flows of high aspect ratio</title><title>Journal of computational physics</title><description>We develop a new multiscale scheme for simulating micro/nano flows of high aspect ratio in the flow direction, e.g. within long ducts, tubes, or channels, of varying section. The scheme couples conventional hydrodynamic conservation equations for mass and momentum-flux with molecular dynamics (MD) in a unified framework. The method is very much different from common ‘domain-decomposition’ hybrid methods, and is more related to micro-resolution methods, such as the Heterogeneous Multiscale Method. We optimise the use of the computationally-costly MD solvers by applying them only at a limited number of streamwise-distributed cross-sections of the macroscale geometry. The greater the streamwise scale of the geometry, the more significant is the computational speed-up when compared to a full MD simulation. We test our new multiscale method on the case of a converging/diverging nanochannel conveying a simple Lennard–Jones liquid. We validate the results from our simulations by comparing them to a full MD simulation of the same test case.</description><subject>Channels</subject><subject>Computation</subject><subject>Computational techniques</subject><subject>Computer simulation</subject><subject>Coupled solvers</subject><subject>Exact sciences and technology</subject><subject>High aspect ratio</subject><subject>Hybrid method</subject><subject>Mathematical methods in physics</subject><subject>Molecular dynamics</subject><subject>Multiscale methods</subject><subject>Multiscale simulations</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Physics</subject><subject>Scale-separation</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwA9i8ILEknJ3EjoUYEOJLqsQCs-W4Z-oqiYudgvj3uCpiZLrluffeewg5Z1AyYOJqXa7tpuTAeAmqBFAHZMZAQcElE4dkBsBZoZRix-QkpTUAtE3dzsjNLR22_eSTNT3SAadVWFIXIh28jeFqNGOgrg9fiQZHV_59RU3aoJ1oNJMPp-TImT7h2e-ck7eH-9e7p2Lx8vh8d7sobCP5VHSNXdbC1LITiNBUsmboVCM6aa1AxqWsETou6lo41rqGN1C1leASWtXJGqo5udznbmL42GKa9JAbY9-bEcM2acYzLpSoWEbZHs31U4ro9Cb6wcRvzUDvVOm1zqr0TpUGpbOqvHPxG292Hlw0o_Xpb5ELCRyaXY3rPYf510-PUSfrcbS49DE70cvg_7nyA9LbfAk</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Borg, Matthew K.</creator><creator>Lockerby, Duncan A.</creator><creator>Reese, Jason M.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2013</creationdate><title>A multiscale method for micro/nano flows of high aspect ratio</title><author>Borg, Matthew K. ; Lockerby, Duncan A. ; Reese, Jason M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c572t-b5cd46a47b6ee053741ef956b7cc6e12774e0b26446f18f5250383627089b7403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Channels</topic><topic>Computation</topic><topic>Computational techniques</topic><topic>Computer simulation</topic><topic>Coupled solvers</topic><topic>Exact sciences and technology</topic><topic>High aspect ratio</topic><topic>Hybrid method</topic><topic>Mathematical methods in physics</topic><topic>Molecular dynamics</topic><topic>Multiscale methods</topic><topic>Multiscale simulations</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Physics</topic><topic>Scale-separation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borg, Matthew K.</creatorcontrib><creatorcontrib>Lockerby, Duncan A.</creatorcontrib><creatorcontrib>Reese, Jason M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borg, Matthew K.</au><au>Lockerby, Duncan A.</au><au>Reese, Jason M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multiscale method for micro/nano flows of high aspect ratio</atitle><jtitle>Journal of computational physics</jtitle><date>2013</date><risdate>2013</risdate><volume>233</volume><spage>400</spage><epage>413</epage><pages>400-413</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><coden>JCTPAH</coden><abstract>We develop a new multiscale scheme for simulating micro/nano flows of high aspect ratio in the flow direction, e.g. within long ducts, tubes, or channels, of varying section. The scheme couples conventional hydrodynamic conservation equations for mass and momentum-flux with molecular dynamics (MD) in a unified framework. The method is very much different from common ‘domain-decomposition’ hybrid methods, and is more related to micro-resolution methods, such as the Heterogeneous Multiscale Method. We optimise the use of the computationally-costly MD solvers by applying them only at a limited number of streamwise-distributed cross-sections of the macroscale geometry. The greater the streamwise scale of the geometry, the more significant is the computational speed-up when compared to a full MD simulation. We test our new multiscale method on the case of a converging/diverging nanochannel conveying a simple Lennard–Jones liquid. We validate the results from our simulations by comparing them to a full MD simulation of the same test case.</abstract><cop>Kidlington</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2012.09.009</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2013, Vol.233, p.400-413
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_miscellaneous_1283669631
source ScienceDirect Freedom Collection
subjects Channels
Computation
Computational techniques
Computer simulation
Coupled solvers
Exact sciences and technology
High aspect ratio
Hybrid method
Mathematical methods in physics
Molecular dynamics
Multiscale methods
Multiscale simulations
Nanocomposites
Nanomaterials
Nanostructure
Physics
Scale-separation
title A multiscale method for micro/nano flows of high aspect ratio
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T20%3A17%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multiscale%20method%20for%20micro/nano%20flows%20of%20high%20aspect%20ratio&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Borg,%20Matthew%20K.&rft.date=2013&rft.volume=233&rft.spage=400&rft.epage=413&rft.pages=400-413&rft.issn=0021-9991&rft.eissn=1090-2716&rft.coden=JCTPAH&rft_id=info:doi/10.1016/j.jcp.2012.09.009&rft_dat=%3Cproquest_cross%3E1283669631%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c572t-b5cd46a47b6ee053741ef956b7cc6e12774e0b26446f18f5250383627089b7403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1283669631&rft_id=info:pmid/&rfr_iscdi=true