Loading…

A numerical study of the impact of surface roughness on heat and fluid flow past a cylindrical particle

This work is devoted to a two-dimensional numerical study of the influence of surface roughness on heat and fluid flow past a cylindrical particle. The surface roughness consists of radial notches periodically distributed on the cylinder surface. The roughness was varied using different notch shapes...

Full description

Saved in:
Bibliographic Details
Published in:International journal of thermal sciences 2013-03, Vol.65, p.92-103
Main Authors: Dierich, F., Nikrityuk, P.A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c542t-e50ce2b6ee8cff980d4e00b3eaa1fa2a52146b3567288611be56230faeecc6973
cites cdi_FETCH-LOGICAL-c542t-e50ce2b6ee8cff980d4e00b3eaa1fa2a52146b3567288611be56230faeecc6973
container_end_page 103
container_issue
container_start_page 92
container_title International journal of thermal sciences
container_volume 65
creator Dierich, F.
Nikrityuk, P.A.
description This work is devoted to a two-dimensional numerical study of the influence of surface roughness on heat and fluid flow past a cylindrical particle. The surface roughness consists of radial notches periodically distributed on the cylinder surface. The roughness was varied using different notch shapes and heights. The Navier–Stokes equation and conservation of energy were discretized using the Finite Volume Method (FVM) onto a fixed Cartesian grid, and the Immersed Boundary Method (IBM) with continuous forcing (Khadra et al. Int. J. Numer. Meth. Fluids 34, 2000) was used to simulate heat and gas flow past a cylindrical particle with a complex geometry. A polygon and the Sutherland–Hodgman clipping algorithm were used to immerse the rough cylindrical particle into a Cartesian grid. The influence of the roughness on the drag coefficient and the surface-averaged Nusselt number was studied numerically over the range of Reynolds numbers 10 ≤ Re ≤ 200. Analyzing the numerical simulations showed that the impact of the roughness on the drag coefficient is negligible in comparison to the surface-averaged Nusselt number. In particular, the Nusselt number decreases rapidly as the degree of roughness increases. A universal relationship was found between the efficiency factor Ef, which is the ratio between Nusselt numbers predicted for rough and smooth surfaces, and the surface enlargement coefficient Sef. ► The influence of surface roughness on heat and fluid flow past a cylindrical particle. ► Sutherland–Hodgman clipping algorithm. ► Efficiency factor. ► Surface enlargement coefficient.
doi_str_mv 10.1016/j.ijthermalsci.2012.08.009
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1283670327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1290072912002335</els_id><sourcerecordid>1283670327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c542t-e50ce2b6ee8cff980d4e00b3eaa1fa2a52146b3567288611be56230faeecc6973</originalsourceid><addsrcrecordid>eNqNkE9r3DAQxU1oINtNvoMIFHKxM5LXkpzbkrZJIdBLcxaz8mhXi_9Vslv220dmQ8mxl9GMePo9zcuyWw4FBy7vj4U_TgcKHbbR-kIAFwXoAqC-yFZcKZ1vuJSfUi9qyEGJ-ir7HOMRAFQN9Srbb1k_dxS8xZbFaW5ObHAsIZnvRrTTMsU5OLTEwjDvDz3FyIaeHQgnhn3DXDv7pQ5_2Ygx3TF7an3fnJEjhsnblq6zS5f-SDfv5zp7_f7t1-Nz_vLz6cfj9iW31UZMOVVgSewkkbbO1RqaDQHsSkLkDgVWgm_krqykElpLzndUSVGCQyJrZa3KdXZ35o5h-D1TnEzno6W2xZ6GORoudCkVlGKRPpylNgwxBnJmDL7DcDIczJKuOZqP6ZolXQPapHTT4y_vPhjTni5gb338RxAKlObVovt61lFa-o-nYBKJekuND2Qn0wz-f-zeAK3KmLE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283670327</pqid></control><display><type>article</type><title>A numerical study of the impact of surface roughness on heat and fluid flow past a cylindrical particle</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Dierich, F. ; Nikrityuk, P.A.</creator><creatorcontrib>Dierich, F. ; Nikrityuk, P.A.</creatorcontrib><description>This work is devoted to a two-dimensional numerical study of the influence of surface roughness on heat and fluid flow past a cylindrical particle. The surface roughness consists of radial notches periodically distributed on the cylinder surface. The roughness was varied using different notch shapes and heights. The Navier–Stokes equation and conservation of energy were discretized using the Finite Volume Method (FVM) onto a fixed Cartesian grid, and the Immersed Boundary Method (IBM) with continuous forcing (Khadra et al. Int. J. Numer. Meth. Fluids 34, 2000) was used to simulate heat and gas flow past a cylindrical particle with a complex geometry. A polygon and the Sutherland–Hodgman clipping algorithm were used to immerse the rough cylindrical particle into a Cartesian grid. The influence of the roughness on the drag coefficient and the surface-averaged Nusselt number was studied numerically over the range of Reynolds numbers 10 ≤ Re ≤ 200. Analyzing the numerical simulations showed that the impact of the roughness on the drag coefficient is negligible in comparison to the surface-averaged Nusselt number. In particular, the Nusselt number decreases rapidly as the degree of roughness increases. A universal relationship was found between the efficiency factor Ef, which is the ratio between Nusselt numbers predicted for rough and smooth surfaces, and the surface enlargement coefficient Sef. ► The influence of surface roughness on heat and fluid flow past a cylindrical particle. ► Sutherland–Hodgman clipping algorithm. ► Efficiency factor. ► Surface enlargement coefficient.</description><identifier>ISSN: 1290-0729</identifier><identifier>EISSN: 1778-4166</identifier><identifier>DOI: 10.1016/j.ijthermalsci.2012.08.009</identifier><language>eng</language><publisher>Kidlington: Elsevier Masson SAS</publisher><subject>Applied sciences ; Computational fluid dynamics ; Computer simulation ; Convective heat transfer ; Cylinders ; Drag force ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fluid flow ; Fluids ; Heat transfer ; Immersed boundary method ; Nusselt number ; Roughness ; Surface roughness ; Theoretical studies. Data and constants. Metering</subject><ispartof>International journal of thermal sciences, 2013-03, Vol.65, p.92-103</ispartof><rights>2012 Elsevier Masson SAS</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c542t-e50ce2b6ee8cff980d4e00b3eaa1fa2a52146b3567288611be56230faeecc6973</citedby><cites>FETCH-LOGICAL-c542t-e50ce2b6ee8cff980d4e00b3eaa1fa2a52146b3567288611be56230faeecc6973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27078159$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dierich, F.</creatorcontrib><creatorcontrib>Nikrityuk, P.A.</creatorcontrib><title>A numerical study of the impact of surface roughness on heat and fluid flow past a cylindrical particle</title><title>International journal of thermal sciences</title><description>This work is devoted to a two-dimensional numerical study of the influence of surface roughness on heat and fluid flow past a cylindrical particle. The surface roughness consists of radial notches periodically distributed on the cylinder surface. The roughness was varied using different notch shapes and heights. The Navier–Stokes equation and conservation of energy were discretized using the Finite Volume Method (FVM) onto a fixed Cartesian grid, and the Immersed Boundary Method (IBM) with continuous forcing (Khadra et al. Int. J. Numer. Meth. Fluids 34, 2000) was used to simulate heat and gas flow past a cylindrical particle with a complex geometry. A polygon and the Sutherland–Hodgman clipping algorithm were used to immerse the rough cylindrical particle into a Cartesian grid. The influence of the roughness on the drag coefficient and the surface-averaged Nusselt number was studied numerically over the range of Reynolds numbers 10 ≤ Re ≤ 200. Analyzing the numerical simulations showed that the impact of the roughness on the drag coefficient is negligible in comparison to the surface-averaged Nusselt number. In particular, the Nusselt number decreases rapidly as the degree of roughness increases. A universal relationship was found between the efficiency factor Ef, which is the ratio between Nusselt numbers predicted for rough and smooth surfaces, and the surface enlargement coefficient Sef. ► The influence of surface roughness on heat and fluid flow past a cylindrical particle. ► Sutherland–Hodgman clipping algorithm. ► Efficiency factor. ► Surface enlargement coefficient.</description><subject>Applied sciences</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Convective heat transfer</subject><subject>Cylinders</subject><subject>Drag force</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Heat transfer</subject><subject>Immersed boundary method</subject><subject>Nusselt number</subject><subject>Roughness</subject><subject>Surface roughness</subject><subject>Theoretical studies. Data and constants. Metering</subject><issn>1290-0729</issn><issn>1778-4166</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkE9r3DAQxU1oINtNvoMIFHKxM5LXkpzbkrZJIdBLcxaz8mhXi_9Vslv220dmQ8mxl9GMePo9zcuyWw4FBy7vj4U_TgcKHbbR-kIAFwXoAqC-yFZcKZ1vuJSfUi9qyEGJ-ir7HOMRAFQN9Srbb1k_dxS8xZbFaW5ObHAsIZnvRrTTMsU5OLTEwjDvDz3FyIaeHQgnhn3DXDv7pQ5_2Ygx3TF7an3fnJEjhsnblq6zS5f-SDfv5zp7_f7t1-Nz_vLz6cfj9iW31UZMOVVgSewkkbbO1RqaDQHsSkLkDgVWgm_krqykElpLzndUSVGCQyJrZa3KdXZ35o5h-D1TnEzno6W2xZ6GORoudCkVlGKRPpylNgwxBnJmDL7DcDIczJKuOZqP6ZolXQPapHTT4y_vPhjTni5gb338RxAKlObVovt61lFa-o-nYBKJekuND2Qn0wz-f-zeAK3KmLE</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Dierich, F.</creator><creator>Nikrityuk, P.A.</creator><general>Elsevier Masson SAS</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20130301</creationdate><title>A numerical study of the impact of surface roughness on heat and fluid flow past a cylindrical particle</title><author>Dierich, F. ; Nikrityuk, P.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c542t-e50ce2b6ee8cff980d4e00b3eaa1fa2a52146b3567288611be56230faeecc6973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Convective heat transfer</topic><topic>Cylinders</topic><topic>Drag force</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Heat transfer</topic><topic>Immersed boundary method</topic><topic>Nusselt number</topic><topic>Roughness</topic><topic>Surface roughness</topic><topic>Theoretical studies. Data and constants. Metering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dierich, F.</creatorcontrib><creatorcontrib>Nikrityuk, P.A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of thermal sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dierich, F.</au><au>Nikrityuk, P.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A numerical study of the impact of surface roughness on heat and fluid flow past a cylindrical particle</atitle><jtitle>International journal of thermal sciences</jtitle><date>2013-03-01</date><risdate>2013</risdate><volume>65</volume><spage>92</spage><epage>103</epage><pages>92-103</pages><issn>1290-0729</issn><eissn>1778-4166</eissn><abstract>This work is devoted to a two-dimensional numerical study of the influence of surface roughness on heat and fluid flow past a cylindrical particle. The surface roughness consists of radial notches periodically distributed on the cylinder surface. The roughness was varied using different notch shapes and heights. The Navier–Stokes equation and conservation of energy were discretized using the Finite Volume Method (FVM) onto a fixed Cartesian grid, and the Immersed Boundary Method (IBM) with continuous forcing (Khadra et al. Int. J. Numer. Meth. Fluids 34, 2000) was used to simulate heat and gas flow past a cylindrical particle with a complex geometry. A polygon and the Sutherland–Hodgman clipping algorithm were used to immerse the rough cylindrical particle into a Cartesian grid. The influence of the roughness on the drag coefficient and the surface-averaged Nusselt number was studied numerically over the range of Reynolds numbers 10 ≤ Re ≤ 200. Analyzing the numerical simulations showed that the impact of the roughness on the drag coefficient is negligible in comparison to the surface-averaged Nusselt number. In particular, the Nusselt number decreases rapidly as the degree of roughness increases. A universal relationship was found between the efficiency factor Ef, which is the ratio between Nusselt numbers predicted for rough and smooth surfaces, and the surface enlargement coefficient Sef. ► The influence of surface roughness on heat and fluid flow past a cylindrical particle. ► Sutherland–Hodgman clipping algorithm. ► Efficiency factor. ► Surface enlargement coefficient.</abstract><cop>Kidlington</cop><pub>Elsevier Masson SAS</pub><doi>10.1016/j.ijthermalsci.2012.08.009</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1290-0729
ispartof International journal of thermal sciences, 2013-03, Vol.65, p.92-103
issn 1290-0729
1778-4166
language eng
recordid cdi_proquest_miscellaneous_1283670327
source ScienceDirect Freedom Collection 2022-2024
subjects Applied sciences
Computational fluid dynamics
Computer simulation
Convective heat transfer
Cylinders
Drag force
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Fluid flow
Fluids
Heat transfer
Immersed boundary method
Nusselt number
Roughness
Surface roughness
Theoretical studies. Data and constants. Metering
title A numerical study of the impact of surface roughness on heat and fluid flow past a cylindrical particle
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A57%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20numerical%20study%20of%20the%20impact%20of%20surface%20roughness%20on%20heat%20and%20fluid%20flow%20past%20a%20cylindrical%20particle&rft.jtitle=International%20journal%20of%20thermal%20sciences&rft.au=Dierich,%20F.&rft.date=2013-03-01&rft.volume=65&rft.spage=92&rft.epage=103&rft.pages=92-103&rft.issn=1290-0729&rft.eissn=1778-4166&rft_id=info:doi/10.1016/j.ijthermalsci.2012.08.009&rft_dat=%3Cproquest_cross%3E1283670327%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c542t-e50ce2b6ee8cff980d4e00b3eaa1fa2a52146b3567288611be56230faeecc6973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1283670327&rft_id=info:pmid/&rfr_iscdi=true