Loading…

(100) MgAl2O4 as a lattice-matched substrate for the epitaxial thin film deposition of the relaxor ferroelectric PMN-PT

The (100) surface of MgAl 2 O 4 is evaluated as a substrate for the thin film deposition of the relaxor ferroelectric PbMg 1/3 Nb 2/3 O 3 (65%)–PbTiO 3 (35%). With a lattice mismatch of less than 0.5%, this film-substrate combination presents a geometrical template for growth that is far superior to...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics. A, Materials science & processing Materials science & processing, 2010-01, Vol.98 (1), p.187-194
Main Authors: Keogh, D., Chen, Z., Hughes, R. A., Dabkowski, A., Marinov, O., Maunders, C., Gunawan, L., Deen, M. J., Preston, J. S., Botton, G. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c417t-8a075e2581a1cfe718be3def0378f4a59abc868b36f1466a8e6dc728853f2c373
cites cdi_FETCH-LOGICAL-c417t-8a075e2581a1cfe718be3def0378f4a59abc868b36f1466a8e6dc728853f2c373
container_end_page 194
container_issue 1
container_start_page 187
container_title Applied physics. A, Materials science & processing
container_volume 98
creator Keogh, D.
Chen, Z.
Hughes, R. A.
Dabkowski, A.
Marinov, O.
Maunders, C.
Gunawan, L.
Deen, M. J.
Preston, J. S.
Botton, G. A.
description The (100) surface of MgAl 2 O 4 is evaluated as a substrate for the thin film deposition of the relaxor ferroelectric PbMg 1/3 Nb 2/3 O 3 (65%)–PbTiO 3 (35%). With a lattice mismatch of less than 0.5%, this film-substrate combination presents a geometrical template for growth that is far superior to that formed with other commercially available oxide substrates. Films were deposited using the pulsed laser deposition technique and were characterized in terms of their crystallographic, microstructural, and dielectric properties. From a crystallographic perspective the films show excellent cube-on-cube epitaxy, are highly oriented, and show no evidence of the frequently observed parasitic pyrochlore phase. With the exception of a few faceted surface structures, the film’s microstructure is single-crystal-like, exhibiting a sharp film-substrate interface, a smooth top surface, and no discernable granularity. The dielectric response shows the frequency-dependent diffuse phase transition characteristic of a relaxor material, but with less frequency dispersion and a smaller maximum in the dielectric constant. Taken together, the results suggest that the (100) MgAl 2 O 4 substrate could prove to be an effective substrate material, not only for the PbMg 1/3 Nb 2/3 O 3 (65%)–PbTiO 3 (35%) system, but also for a number of other important lattice-matched ferroelectric, relaxor, and ferroelectric superlattice systems.
doi_str_mv 10.1007/s00339-009-5372-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1283679173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1283679173</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-8a075e2581a1cfe718be3def0378f4a59abc868b36f1466a8e6dc728853f2c373</originalsourceid><addsrcrecordid>eNp9kE1PXCEUhklTk05tf0B3bJrYBZaPe4G7NKZ-JFpd6JqcYQ6KYS5TYOL034uO6bJnQ0543jc5DyHfBD8WnJuflXOlJsb5xEZlJJMfyEIMSjKuFf9IFnwaDLNq0p_I51qfeJ9BygV5PurxH_T64STJm4FCpUATtBY9sjU0_4grWrfL2go0pCEX2h6R4iY22EVIfYszDTGt6Qo3ucYW80xzeKMKJtj1RMBSMib0rURPb69_s9u7L-QgQKr49f09JPdnv-5OL9jVzfnl6ckV84MwjVngZkQ5WgHCBzTCLlGtMHBlbBhgnGDprbZLpYMYtAaLeuWNtHZUQXpl1CE52vduSv6zxdrcOlaPKcGMeVudkFZpMwmjOir2qC-51oLBbUpcQ_nrBHevkt1esuuS3atkJ3vm-3s9VA8pFJh9rP-CUmouh1F0Tu652r_mByzuKW_L3C__T_kLFxiLVA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283679173</pqid></control><display><type>article</type><title>(100) MgAl2O4 as a lattice-matched substrate for the epitaxial thin film deposition of the relaxor ferroelectric PMN-PT</title><source>Springer Link</source><creator>Keogh, D. ; Chen, Z. ; Hughes, R. A. ; Dabkowski, A. ; Marinov, O. ; Maunders, C. ; Gunawan, L. ; Deen, M. J. ; Preston, J. S. ; Botton, G. A.</creator><creatorcontrib>Keogh, D. ; Chen, Z. ; Hughes, R. A. ; Dabkowski, A. ; Marinov, O. ; Maunders, C. ; Gunawan, L. ; Deen, M. J. ; Preston, J. S. ; Botton, G. A.</creatorcontrib><description>The (100) surface of MgAl 2 O 4 is evaluated as a substrate for the thin film deposition of the relaxor ferroelectric PbMg 1/3 Nb 2/3 O 3 (65%)–PbTiO 3 (35%). With a lattice mismatch of less than 0.5%, this film-substrate combination presents a geometrical template for growth that is far superior to that formed with other commercially available oxide substrates. Films were deposited using the pulsed laser deposition technique and were characterized in terms of their crystallographic, microstructural, and dielectric properties. From a crystallographic perspective the films show excellent cube-on-cube epitaxy, are highly oriented, and show no evidence of the frequently observed parasitic pyrochlore phase. With the exception of a few faceted surface structures, the film’s microstructure is single-crystal-like, exhibiting a sharp film-substrate interface, a smooth top surface, and no discernable granularity. The dielectric response shows the frequency-dependent diffuse phase transition characteristic of a relaxor material, but with less frequency dispersion and a smaller maximum in the dielectric constant. Taken together, the results suggest that the (100) MgAl 2 O 4 substrate could prove to be an effective substrate material, not only for the PbMg 1/3 Nb 2/3 O 3 (65%)–PbTiO 3 (35%) system, but also for a number of other important lattice-matched ferroelectric, relaxor, and ferroelectric superlattice systems.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-009-5372-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Characterization and Evaluation of Materials ; Condensed Matter Physics ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Crystallography ; Deposition ; Dielectric thin films ; Dielectrics, piezoelectrics, and ferroelectrics and their properties ; Epitaxy ; Exact sciences and technology ; Ferroelectric materials ; Ferroelectricity ; Laser deposition ; Machines ; Manufacturing ; Materials science ; Methods of deposition of films and coatings; film growth and epitaxy ; Microstructure ; Nanotechnology ; Optical and Electronic Materials ; Physics ; Physics and Astronomy ; Processes ; Relaxors ; Structure and morphology; thickness ; Surfaces and Interfaces ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Thin film structure and morphology ; Thin Films</subject><ispartof>Applied physics. A, Materials science &amp; processing, 2010-01, Vol.98 (1), p.187-194</ispartof><rights>Springer-Verlag 2009</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-8a075e2581a1cfe718be3def0378f4a59abc868b36f1466a8e6dc728853f2c373</citedby><cites>FETCH-LOGICAL-c417t-8a075e2581a1cfe718be3def0378f4a59abc868b36f1466a8e6dc728853f2c373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22602451$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Keogh, D.</creatorcontrib><creatorcontrib>Chen, Z.</creatorcontrib><creatorcontrib>Hughes, R. A.</creatorcontrib><creatorcontrib>Dabkowski, A.</creatorcontrib><creatorcontrib>Marinov, O.</creatorcontrib><creatorcontrib>Maunders, C.</creatorcontrib><creatorcontrib>Gunawan, L.</creatorcontrib><creatorcontrib>Deen, M. J.</creatorcontrib><creatorcontrib>Preston, J. S.</creatorcontrib><creatorcontrib>Botton, G. A.</creatorcontrib><title>(100) MgAl2O4 as a lattice-matched substrate for the epitaxial thin film deposition of the relaxor ferroelectric PMN-PT</title><title>Applied physics. A, Materials science &amp; processing</title><addtitle>Appl. Phys. A</addtitle><description>The (100) surface of MgAl 2 O 4 is evaluated as a substrate for the thin film deposition of the relaxor ferroelectric PbMg 1/3 Nb 2/3 O 3 (65%)–PbTiO 3 (35%). With a lattice mismatch of less than 0.5%, this film-substrate combination presents a geometrical template for growth that is far superior to that formed with other commercially available oxide substrates. Films were deposited using the pulsed laser deposition technique and were characterized in terms of their crystallographic, microstructural, and dielectric properties. From a crystallographic perspective the films show excellent cube-on-cube epitaxy, are highly oriented, and show no evidence of the frequently observed parasitic pyrochlore phase. With the exception of a few faceted surface structures, the film’s microstructure is single-crystal-like, exhibiting a sharp film-substrate interface, a smooth top surface, and no discernable granularity. The dielectric response shows the frequency-dependent diffuse phase transition characteristic of a relaxor material, but with less frequency dispersion and a smaller maximum in the dielectric constant. Taken together, the results suggest that the (100) MgAl 2 O 4 substrate could prove to be an effective substrate material, not only for the PbMg 1/3 Nb 2/3 O 3 (65%)–PbTiO 3 (35%) system, but also for a number of other important lattice-matched ferroelectric, relaxor, and ferroelectric superlattice systems.</description><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Crystallography</subject><subject>Deposition</subject><subject>Dielectric thin films</subject><subject>Dielectrics, piezoelectrics, and ferroelectrics and their properties</subject><subject>Epitaxy</subject><subject>Exact sciences and technology</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Laser deposition</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Microstructure</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Relaxors</subject><subject>Structure and morphology; thickness</subject><subject>Surfaces and Interfaces</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Thin film structure and morphology</subject><subject>Thin Films</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PXCEUhklTk05tf0B3bJrYBZaPe4G7NKZ-JFpd6JqcYQ6KYS5TYOL034uO6bJnQ0543jc5DyHfBD8WnJuflXOlJsb5xEZlJJMfyEIMSjKuFf9IFnwaDLNq0p_I51qfeJ9BygV5PurxH_T64STJm4FCpUATtBY9sjU0_4grWrfL2go0pCEX2h6R4iY22EVIfYszDTGt6Qo3ucYW80xzeKMKJtj1RMBSMib0rURPb69_s9u7L-QgQKr49f09JPdnv-5OL9jVzfnl6ckV84MwjVngZkQ5WgHCBzTCLlGtMHBlbBhgnGDprbZLpYMYtAaLeuWNtHZUQXpl1CE52vduSv6zxdrcOlaPKcGMeVudkFZpMwmjOir2qC-51oLBbUpcQ_nrBHevkt1esuuS3atkJ3vm-3s9VA8pFJh9rP-CUmouh1F0Tu652r_mByzuKW_L3C__T_kLFxiLVA</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Keogh, D.</creator><creator>Chen, Z.</creator><creator>Hughes, R. A.</creator><creator>Dabkowski, A.</creator><creator>Marinov, O.</creator><creator>Maunders, C.</creator><creator>Gunawan, L.</creator><creator>Deen, M. J.</creator><creator>Preston, J. S.</creator><creator>Botton, G. A.</creator><general>Springer-Verlag</general><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20100101</creationdate><title>(100) MgAl2O4 as a lattice-matched substrate for the epitaxial thin film deposition of the relaxor ferroelectric PMN-PT</title><author>Keogh, D. ; Chen, Z. ; Hughes, R. A. ; Dabkowski, A. ; Marinov, O. ; Maunders, C. ; Gunawan, L. ; Deen, M. J. ; Preston, J. S. ; Botton, G. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-8a075e2581a1cfe718be3def0378f4a59abc868b36f1466a8e6dc728853f2c373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Crystallography</topic><topic>Deposition</topic><topic>Dielectric thin films</topic><topic>Dielectrics, piezoelectrics, and ferroelectrics and their properties</topic><topic>Epitaxy</topic><topic>Exact sciences and technology</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Laser deposition</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Microstructure</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Relaxors</topic><topic>Structure and morphology; thickness</topic><topic>Surfaces and Interfaces</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Thin film structure and morphology</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keogh, D.</creatorcontrib><creatorcontrib>Chen, Z.</creatorcontrib><creatorcontrib>Hughes, R. A.</creatorcontrib><creatorcontrib>Dabkowski, A.</creatorcontrib><creatorcontrib>Marinov, O.</creatorcontrib><creatorcontrib>Maunders, C.</creatorcontrib><creatorcontrib>Gunawan, L.</creatorcontrib><creatorcontrib>Deen, M. J.</creatorcontrib><creatorcontrib>Preston, J. S.</creatorcontrib><creatorcontrib>Botton, G. A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics. A, Materials science &amp; processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keogh, D.</au><au>Chen, Z.</au><au>Hughes, R. A.</au><au>Dabkowski, A.</au><au>Marinov, O.</au><au>Maunders, C.</au><au>Gunawan, L.</au><au>Deen, M. J.</au><au>Preston, J. S.</au><au>Botton, G. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>(100) MgAl2O4 as a lattice-matched substrate for the epitaxial thin film deposition of the relaxor ferroelectric PMN-PT</atitle><jtitle>Applied physics. A, Materials science &amp; processing</jtitle><stitle>Appl. Phys. A</stitle><date>2010-01-01</date><risdate>2010</risdate><volume>98</volume><issue>1</issue><spage>187</spage><epage>194</epage><pages>187-194</pages><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>The (100) surface of MgAl 2 O 4 is evaluated as a substrate for the thin film deposition of the relaxor ferroelectric PbMg 1/3 Nb 2/3 O 3 (65%)–PbTiO 3 (35%). With a lattice mismatch of less than 0.5%, this film-substrate combination presents a geometrical template for growth that is far superior to that formed with other commercially available oxide substrates. Films were deposited using the pulsed laser deposition technique and were characterized in terms of their crystallographic, microstructural, and dielectric properties. From a crystallographic perspective the films show excellent cube-on-cube epitaxy, are highly oriented, and show no evidence of the frequently observed parasitic pyrochlore phase. With the exception of a few faceted surface structures, the film’s microstructure is single-crystal-like, exhibiting a sharp film-substrate interface, a smooth top surface, and no discernable granularity. The dielectric response shows the frequency-dependent diffuse phase transition characteristic of a relaxor material, but with less frequency dispersion and a smaller maximum in the dielectric constant. Taken together, the results suggest that the (100) MgAl 2 O 4 substrate could prove to be an effective substrate material, not only for the PbMg 1/3 Nb 2/3 O 3 (65%)–PbTiO 3 (35%) system, but also for a number of other important lattice-matched ferroelectric, relaxor, and ferroelectric superlattice systems.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00339-009-5372-2</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-8396
ispartof Applied physics. A, Materials science & processing, 2010-01, Vol.98 (1), p.187-194
issn 0947-8396
1432-0630
language eng
recordid cdi_proquest_miscellaneous_1283679173
source Springer Link
subjects Characterization and Evaluation of Materials
Condensed Matter Physics
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Crystallography
Deposition
Dielectric thin films
Dielectrics, piezoelectrics, and ferroelectrics and their properties
Epitaxy
Exact sciences and technology
Ferroelectric materials
Ferroelectricity
Laser deposition
Machines
Manufacturing
Materials science
Methods of deposition of films and coatings
film growth and epitaxy
Microstructure
Nanotechnology
Optical and Electronic Materials
Physics
Physics and Astronomy
Processes
Relaxors
Structure and morphology
thickness
Surfaces and Interfaces
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
Thin film structure and morphology
Thin Films
title (100) MgAl2O4 as a lattice-matched substrate for the epitaxial thin film deposition of the relaxor ferroelectric PMN-PT
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A46%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=(100)%20MgAl2O4%20as%20a%20lattice-matched%20substrate%20for%20the%20epitaxial%20thin%20film%20deposition%20of%20the%20relaxor%20ferroelectric%20PMN-PT&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Keogh,%20D.&rft.date=2010-01-01&rft.volume=98&rft.issue=1&rft.spage=187&rft.epage=194&rft.pages=187-194&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-009-5372-2&rft_dat=%3Cproquest_cross%3E1283679173%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c417t-8a075e2581a1cfe718be3def0378f4a59abc868b36f1466a8e6dc728853f2c373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1283679173&rft_id=info:pmid/&rfr_iscdi=true