Loading…

Cation-mediated interaction of dextran sulfate with phospholipid vesicles: binding, vesicle surface polarity, leakage and fusion

The interaction of dextran sulfate (DS) with dimyristoylphosphatidylcholine (DMPC) large unilamellar vesicles was investigated. DS of different molecular weights (1, 8, 40 and 500kDa) and divalent cations (Ca^sup 2+^, Mg^sup 2+^ and Mn^sup 2+^) and the trivalent cation La^sup 3+^ were used in the ex...

Full description

Saved in:
Bibliographic Details
Published in:Colloid and polymer science 2000-07, Vol.278 (7), p.637-646
Main Authors: ZSCHÖRNIG, O, RICHTER, W, PAASCHE, G, ARNOLD, K
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The interaction of dextran sulfate (DS) with dimyristoylphosphatidylcholine (DMPC) large unilamellar vesicles was investigated. DS of different molecular weights (1, 8, 40 and 500kDa) and divalent cations (Ca^sup 2+^, Mg^sup 2+^ and Mn^sup 2+^) and the trivalent cation La^sup 3+^ were used in the experiments. Binding of DS was studied by use of the microelectrophoresis and monolayer technique. Binding depends strongly on cation and NaCl concentrations in the medium and does not occur in the absence of multivalent cations. Binding is modulated by the molecular weight of the polymers; DS with lower molecular weights lead to less negative zeta potentials at identical concentrations. A comparable monomer of DS, glucose-6-sulfate, does not change the zeta potential of DMPC vesicles. Monolayer experiments revealed a decrease in surface pressure after addition of multivalent cations and DS, indicating a stronger interaction of the cation-polymer complex with the phosphatidylcholine headgroups than its penetration into the phospholipid (PL) bilayer. The cation-mediated binding of DS to the vesicles leads to aggregation of the vesicles. The tendency to promote aggregation of DMPC vesicles is La^sup 3+^>Ca^sup 2+^>Mn^sup 2+^≥ Mg^sup 2+^. The aggregated vesicles show a stacklike arrangement of the bilayers as shown by freeze-fracture electron microscopy. The strong aggregation is accompanied by lipid mixing measured by the 1,4-nitrobenzo-2-oxa-1,3-diazole-phosphatidylethanolamine (PE)/lissamine rhodamine B sulfonyl-PE assay. At low ionic strength substantial lipid mixing can be observed in the previously mentioned order of the cations. This lipid mixing is accompanied by an increase in the permeability of the vesicles as revealed by the 1-aminonaphthalene-3,6,8-trisulfonic acid/p-xylenebis (pyridiium bromide) assay. The extent of leakage is determined by the cation used and the DS molecular weight. These interaction processes between the opposing bilayers are connected with a decrease in the water content in the gap between the opposing PL bilayers. As a measure for the change of the polar properties of the vesicle surface the shift of the emission wavelength of the fluorescent probe dansylphosphatidylethanolamine was measured. The effectiveness of divalent/trivalent cations to decrease the surface dielectric constant of DMPC vesicles also followed the sequence of ions as found for binding, PL mixing and leakage. The results are discussed in terms of the changed hydr
ISSN:0303-402X
1435-1536
DOI:10.1007/s003960000295