Loading…
Continuous tuning of the threshold voltage of organic thin-film transistors by a chemically reactive interfacial layer
For the design and manufacture of complex integrated circuits, control over the threshold voltage of the transistors is essential. In the present contribution, we present a non-invasive method to tune the threshold voltage of organic thin-film transistors after device assembly over a wide range with...
Saved in:
Published in: | Applied physics. A, Materials science & processing Materials science & processing, 2009-04, Vol.95 (1), p.43-48 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | For the design and manufacture of complex integrated circuits, control over the threshold voltage of the transistors is essential. In the present contribution, we present a non-invasive method to tune the threshold voltage of organic thin-film transistors after device assembly over a wide range without any significant degradation of the device characteristics. This is realized by incorporating a thin, chemically reactive siloxane layer bonded to the gate oxide. This results in threshold voltages of around 70 V in the as-prepared devices. By exposing a transistor modified in this way to ammonia at different concentrations, the threshold voltage can be tuned in steps of only a few volts. This treatment affects only the charge density at the semiconductor–dielectric interface, leaving the overall shape of the transistor characteristics and the charge-carrier mobility largely unaltered. |
---|---|
ISSN: | 0947-8396 1432-0630 |
DOI: | 10.1007/s00339-008-4995-z |