Loading…
Predicting the pilling propensity of fabrics through artificial neural network modeling
Fabric pilling is affected by many interacting factors. This study uses artificial neural networks to model the multi-linear relationships between fiber, yarn and fabric properties and their effect on the pilling propensity of pure wool knitted fabrics. This tool shall enable the user to gauge the e...
Saved in:
Published in: | Textile research journal 2005-07, Vol.75 (7), p.557-561 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Fabric pilling is affected by many interacting factors. This study uses artificial neural networks to model the multi-linear relationships between fiber, yarn and fabric properties and their effect on the pilling propensity of pure wool knitted fabrics. This tool shall enable the user to gauge the expected pilling performance of a fabric from a number of given inputs. It will also provide a means of improving current products by offering alternative material specification and/or selection. In addition to having the capability to predict pilling performance, the model will allow for clarification of major fiber, yarn and fabric attributes affecting fabric pilling. |
---|---|
ISSN: | 0040-5175 1746-7748 |
DOI: | 10.1177/0040517505056872 |